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Why CW-complexes?
Combinatorial nature that allows for homotopy computations.
( CW-complexes : homotopy = graph C*-algebras : K-theory )

Homotopy equivalence: X YidX idY
f

g

⇓ ��⇑

Weak homotopy equivalence: X Y
f

that induces iso in homotopy.

Whitehead Theorem

■ Every weak homotopy equivalence between CW-complexes is a (strict) homotopy
equivalence.

CW-approximation Theorem

■ For every topological space X there is a CW-complex Z and a weak homotopy
equivalence f : Z! X.

We are interested in finite CW-complexes =⇒ compact Hausdorff spaces.

(Notations. CHAUS := category of compact Hausdorff spaces.)
1 / 21



The category of quantum spaces

Gelfand-Naimark functor from CHAUS to commutative unital C*-algebras:
X

Y

f

 7−!


C(X)

C(Y)

f∗


We define:

QSPACE :=
{

Unital C*-algebras
}op

Objects in QSPACE are denoted by X,Y ,Z, etc. The corresponding (not necessarily
commutative) C*-algebras by C(X),C(Y),C(Z), etc. In this category, a morphism

X −! Y means a unital *-hom C(X) − C(Y)

Not a concrete category!

CHAUS embeds as a full subcategory in QSPACE.

Goal: develop a theory of CW-complexes in QSPACE.
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What generalized (co)homology?

Exercise

Let n ⩾ 1. Compute the K-theory:

K(n points) = Zn K(CPn−1) = Z[x]/(xn)

=⇒ K(n points) ∼= K(CPn−1) as (graded) abelian groups, but ̸∼= as rings.

Where does the ring structure come from? Let A be a unital C*-algebra.

If (and only if) A is commutative,

then m : A⊗A! A is a *-homomorphism

=⇒ m induces a group hom K(A)⊗ K(A)! K(A⊗A)
K(m)
−−−! K(A).

A way out? Let X, Y be in CHAUS and φ : K(Y)! K(X) an iso of abelian groups.
If φ is induced by a cont. map X! Y, then it is an isomorphism of rings.

In general

K-equivalence =⇒ iso of K-groups
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CW-complexes
Let X be in CHAUS. A (finite) CW-structure on X is a filtration “by skeleta”

X0 ↪−! X1 ↪−! . . . ↪−! Xn−1 ↪−! Xn = X

s.t. X0 is finite discrete and each Xk is obtained from Xk−1 by attaching closed balls.

Xk−1

Sdk−1

Bdk

In categorical terms, for each 1 ⩽ k ⩽ n we
have a pushout diagram

Y

Xk Xk−1

Bdk Sdk−1∂

a

a = attaching map, ∂ = boundary map.

Applications? Get K-theory recursively (Mayer-Vietoris).
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Gluing and pullbacks

A commutative diagram (of sets):

P Y

X Z

j

i

g

f

is a pushout diagram if the map

P
i⊔j
 −−−

X ⊔ Y

f(z) ∼ g(z)
is iso.

We get P by “gluing” X and Y along Z.

A commutative diagram of C∗-algebras:

A B

C D

i

j f

g

is a pullback diagram if the map

A
i×j
−−!

{
(b, c) ∈ B× C : f(b) = g(c)

}

=
:

B×D C

is an isomorphism.

In QSPACE, Eilers-Loring-Pedersen NCCW-complexes (1998): tensor C(Bd) and C(Sd−1)

with finite-dimensional C*-algebras (finite q-spaces). Not enough for our purposes!
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q-spheres and balls [Hong & Szymański, 2002 & 2008]

v̄

ē

S2n+1
q

v̄

B2n
q
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Trimmable graphs [Arici, D’Andrea, Hajac, Tobolski, 2018]

ē

subgraph

v̄
A graph with a distinguished vertex v̄ is
called v̄-trimmable if:

1 v̄ emits one loop ē and no other edges;

2 v̄ is the target of other edges, besides ē;

3 if a vertex of the subgraph emits arrow(s)
ending in v̄, it must also emit other
arrow(s) not ending in v̄.

Examples:

• Vaksman-Soibelman quantum spheres S2n+1
q ,

• . . .
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Pullback structure of trimmable graph C∗-algebras

A U(1)-equivariant (cf. gauge action) pullback diagram:

ē
v̄

subgraph
v̄

subgraph ⊗

subgraph subgraph ⊗

∂ ◦ r

(r⊗ id)δ

∂⊗ id

δ
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In the case of q-spheres the U(1)-invariant part is the pullback diagram:

C(CPn
q) C(CPn−1

q )

C(B2n
q ) C(S2n−1

q )
∂∗

or the pushout in QSPACE:

CPn
q CPn−1

q

B2n
q S2n−1

q
∂
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Mayer-Vietoris

If {X, Y} is an open cover of a smooth n-manifold P, one has the pushout diagram:

P Y

X Z := X ∩ Y

a short exact sequence of k-forms, and a long exact sequence in de Rham cohomology

0 H0(P) H0(X)⊕H0(Y) H0(Z)

H1(P) H1(X)⊕H1(Y) H1(Z)

H2(P) . . . . . . . . . . . . . . . Hn(Z) 0

This holds for more general (co)homology theories (e.g. singular) and one-injective pushout
diagrams (e.g. of CW-complexes). It holds in QSPACE for K-theory.

In QSPACE we want to attach cells with “injective” boundary map and prescribed K-theory.
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What kind of cells?

In QSPACE, the opposite of a surjective *-hom. C(Y) ↠ C(X) is depicted X ↪−! Y .

A morphism ∂ : Sd−1 ↪−! Bd is called a boundary map from a K-sphere to a K-ball if it

induces one of the following short exact sequences in K-theory. Here K∗(X) := K∗(C(X)).

d even:

0 K0(Bd)

∼=

Z

K0(Sd−1)

∼=

Z

0 0

0 K1(Bd)

∼=

0

K1(Sd−1)

∼=

Z

Z 0

d odd:

0 K0(Bd)
∼=

Z

K0(Sd−1)

∼=

Z⊕ Z

Z 0

0 K1(Bd)

∼=

0

K1(Sd−1)

∼=

0

0 0

Examples:

■ Vaskman-Soibelman quantum spheres and balls (described by graph C*-algebras).

■ Heegaard quantum spheres and polydisks [Hajac, Kaygun, Nest, Pask, Sims, Zieliński].
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Heegaard quantum spheres

S3 as a pushout of (Heegaard splitting):

B2 × S1 S1 × S1 B2 × S1
z⃗ 7! −z⃗id

Let T be the Toeplitz C*-algebra. We define

■ Quantum polydisk
C(D×n

q ) := T⊗n

■ Heegaard quantum sphere S2n−1
H defined as a pushout similar to the one above, with

the closed disk B2 replaced by Dq. It is the boundary of a quantum polydisk

C(S2n−1
H ) ∼= T⊗n/K⊗n

■ Quantum projective spaces

C(CPn
H) := C(S2n−1

H )U(1)
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A tubular neighbourhood theorem

Dq

CPn
H

Theorem
The map

C(CPn
H)

id⊗1T−−−−−! C
(
TN(CPn

H)
)
:=

(
C(S2n+1

H )⊗ T
)
U(1)

is a K-equivalence.

We will write
TN(CPn

H)
∼−! CPn

H
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Almost a filtration by skeleta

C̃Pn
H

CPn−1
H CPn

H

TN(CPn−1
H )

S2n−1
H

D×n
q

∼

∼ H
eegaard

constr.
TN

th
m

.
∃

pu
sh

ou
t

Idea: CW-structure up to homotopy.
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What homotopy category?

Definition. A cw-Waldhausen category is a category C with pushouts, with an initial and a
terminal object, and two distinguished classes of morphisms, Cof of cofibrations depicted

and Weq of weak equivalences depicted ∼ , such that

• isomorphisms are both weak equivalences and cofibrations;

• a composition of morfisms in Cof (resp. Weq) is still in Cof (resp. Weq);

• for every object X, the unique morphism from the initial object to X is a cofibration;

• in a pushout diagram of the form

P X

Y Z

h

f

g

one has (i) f ∈ Cof,
(ii) g ∈ Weq ⇐⇒ h ∈ Weq.

• given any commutative diagram of the form

X Z Y

X̃ Z̃ Ỹ

∼ ∼ ∼

the induced map X ⊔Z Y ! X̃ ⊔Z̃ Ỹ is a weak
equivalence.
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The last axiom can be rephrased as follows. Given a commutative diagram

P

X Y

Z

P̃

X̃ Ỹ

Z̃

where each square is a pushout, if the horizontal solid lines are weak equivalences, then
the dashed one is a week equivalence as well.

Example

C = QSPACE

initial obj = empty space

terminal obj = one-point space

Cof ( ) = opposite of surjective unital ∗-homomorphisms

Weq ( ∼ ) = opposite of K-equivalences
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If C is a cw-Waldhausen category, Ho(C ) := C [Weq−1] is well-defined.

Morphisms in Weq−1 ◦ Cof, depicted as , are called weak cofibrations and are
represented by roofs:

X Y =

[ Ỹ

X Y,

∼
]

Composition of weak cofibrations: ˜̃Z
Ỹ Z̃

X Y Z

∼ ∼

∼
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Weak CW-complexes
Definition. A weak CW-structure is a (finite) sequence of weak cofibrations

X0 X1 . . . Xn−1 Xn

each represented by a roof

X̃k

Xk−1 Xk

∼

where X0 is a finite quantum space, each cofibration is part of a pushout of the form

X̃k

Xk−1 Bdk

Sdk−1

∂k

and each ∂k : Sdk−1 ↪−→ Bdk is a boundary map from a K-sphere to a K-ball.
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Computation of K-theory

Every weak CW-structure induces six-term exact sequences (one for each k):

K0(Xk) K0(Xk−1) K0(Sdk−1)/K0(Bdk)

K1(Xk)K1(Xk−1)K1(Sdk−1)/K1(Bdk)

δ01δ10

Theorem. If dk is odd:

K0(Xk−1) ∼= K0(Xk)⊕ ker δ01

K1(Xk) ∼= K1(Xk−1)⊕ im δ01 (only if K1(Xk−1) is free)

If dk is even:

K0(Xk) ∼= K0(Xk−1)⊕ im δ10 (only if K0(Xk−1) is free)

K1(Xk−1) ∼= K1(Xk)⊕ ker δ10
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Quantum projective spaces

Assume that we have a filtration

⋆ = X0 X1 · · · Xn−1 Xn = X

where at each step we attach a single even-dimensional cell.

Theorem

K0(X) = Zn+1 K1(X) = 0

Both Vaksman-Soibelman and Heegaard quantum projective spaces are special cases of
this class of examples.

In fact, for these we have a weak equivalence of weak filtrations by skeleta

CP0
H CP1

H . . . CPn−1
H CPn

H

CP0
q CP1

q . . . CPn−1
q CPn

q

∼ ∼ ∼ ∼
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What next?

▶ CW structure of quantum flag manifolds?

▶ Matassa, Yuncken: (higher rank) graph C*-algebra description for q = 0.

▶ Brzeziński, Krähmer, Ó Buachalla, Strung: quantum flag manifolds as graph
C*-algebras (MFO report 2022). E.g., they claim

C(Fq(1, 2, 3)) ∼= C∗


∞

∞

∞

∞

∞

∞


▶ Trimmable higher rank graph C*-algebras?

▶ . . .

Thanks for your attention!
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