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Why CW-complexes?

Combinatorial nature that allows for homotopy computations.
(CW-complexes : homotopy = graph C*-algebras : K-theory)

Homotopy equivalence: idx C X— Q
oK

f . L
Weak homotopy equivalence: X——Y that induces iso in homotopy.

Whitehead Theorem

® Every weak homotopy equivalence between CW-complexes is a (strict) homotopy
equivalence.

CW-approximation Theorem

m For every topological space X there is a CW-complex Z and a weak homotopy
equivalence f: Z — X.

We are interested in finite CW-complexes = compact Hausdorff spaces.

(Notations. CHAUS := category of compact Hausdorff spaces.)
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The category of quantum spaces

Gelfand-Naimark functor from CHAUS to commutative unital C*-algebras:

X C(X)
-1
Y C(Y)

We define:
QSPACE := {Unital C*-algebras }

Objects in QSPACE are denoted by X, Y, Z, etc. The corresponding (not necessarily
commutative) C*-algebras by C(X), C(Y), C(Z), etc. In this category, a morphism

X—Y means a unital *-hom C(X) — C(Y)

& Not a concrete category!

CHAUS embeds as a full subcategory in QSPACE.

Goal: develop a theory of CW-complexes in QSPACE.
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What generalized (co)homology?

Exercise
Letn > 1. Compute the K-theory:

K(n points) = Z™ K(CP™1) = Z[x]/(x™)

— K(n points) = K(CP™!) as (graded) abelian groups, but % as rings.

Where does the ring structure come from? Let A be a unital C*-algebra.
If (and only if) A is commutative,
thenm: A ® A — A is a *-homomorphism
= m induces a group hom K(A) ® K(A) — K(A® A) Ktm), K(A).

A way out? Let X, Y be in CHAUS and ¢ : K(Y) — K(X) an iso of abelian groups.
If @ is induced by a cont. map X — Y, then it is an isomorphism of rings.

In general

K-equivalence = iso of K-groups
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CW-complexes

Let X be in CHAUS. A (finite) CW-structure on X is a filtration “by skeleta”
Xo—X1=— ...— X1 — X, =X

s.t. X, is finite discrete and each Xy is obtained from Xy_; by attaching closed balls.

In categorical terms, for each 1 < k < n we
have a pushout diagram

L]

Bdk ¢ 0 b) Sdk—l
a = attaching map, 0 = boundary map.

Applications? Get K-theory recursively (Mayer-Vietoris).
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Gluing and pullbacks

A commutative diagram (of sets): A commutative diagram of C*-algebras:
Py A——>B
iT Tf il lf
Xe— 72 C——D

is a pushout diagram if the map is a pullback diagram if the map

plu _XUY o 9, {(b,c) € B x C:f(b) =g(c)}

f(z) ~ g(2) i

We get P by “gluing” X and Y along Z. B xp C

is an isomorphism.

In QSPACE, Eilers-Loring-Pedersen NCCW-complexes (1998): tensor C(B4) and C(S91)
with finite-dimensional C*-algebras (finite g-spaces). Not enough for our purposes!
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g-spheres and balls [Hong & Szymaniski, 2002 & 2008]
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- //
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Trimmable graphs [Arici, D’Andrea, Hajac, Tobolski, 2018]

e Q
A graph with a distinguished vertex v is

TV called v-trimmable if:
2 © 7 emits one loop € and no other edges;

subgraph R K @® 7V is the target of other edges, besides ¢;

4 @ if a vertex of the subgraph emits arrow(s)
/ ending in v, it must also emit other
/ arrow(s) not ending in v.

G

Examples:
e Vaksman-Soibelman quantum spheres S3"*,
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Pullback structure of trimmable graph C*-algebras

A U(1)-equivariant (cf. gauge action) pullback diagram:

subgraph

Laor

(reid)s

_____ oV
subgraph |- ----- Se ® .Q

la®id

subgraph

subgraph | ® .O
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In the case of g-spheres the U(1)-invariant part is the pullback diagram:

C(CPy) —— C(CPy ™)

c(e2m) —2& (s

or the pushout in QSPACE:

CPy +— Pt

B%In 0 S%ln71
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Mayer-Vietoris

If {X, Y} is an open cover of a smooth n-manifold P, one has the pushout diagram:
P<—Y

|

X+—Z:=XNY

a short exact sequence of k-forms, and a long exact sequence in de Rham cohomology

0 —— HY(P) —— HO(X) & HO(Y) —— H(Z) D

[% H!(P) —— H'(X) @ H}(Y) —— H!(Z) j

Q H2(P) —— ...l — H™(Z) — 0

This holds for more general (co)homology theories (e.g. singular) and one-injective pushout
diagrams (e.g. of CW-complexes). It holds in QSPACE for K-theory.

In QSPACE we want to attach cells with “injective” boundary map and prescribed K-theory.
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What kind of cells?

In QSPACE, the opposite of a surjective *-hom. C(Y) — C(X) is depicted X <—— Y .

A morphism 9:S% ! —— B? is called a boundary map from a K-sphere to a K-ball if it
induces one of the following short exact sequences in K-theory. Here K*(X) := K, (C(X)).

d even: d odd:

|
0 — KO(BY) — KO(S%1) — 0 — 0 |, 0 — KO(BY) — KO(S41) — Z — 0
Il ll : ll Il
/ 7/ . 7/ ZoZ
|
0 — K!(BY) — K($4!) —Z —0 |
12 14 |
0 z :

0 — K'Y(BY) — K}(S4 1Y) — 0 —0
112 12
0 0

Examples:
B Vaskman-Soibelman quantum spheres and balls (described by graph C*-algebras).

B Heegaard quantum spheres and polydisks [Hajac, Kaygun, Nest, Pask, Sims, Zielinski].
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Heegaard quantum spheres

S3 as a pushout of (Heegaard splitting):

Let T be the Toeplitz C*-algebra. We define

B Quantum polydisk
C(Dy") = Jen

® Heegaard quantum sphere S2H"’1 defined as a pushout similar to the one above, with
the closed disk B2 replaced by Dy. It is the boundary of a quantum polydisk

C(S2Hn71) ~ T@n/x@n
® Quantum projective spaces

C(CPY) = C(Sf U
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A tubular neighbourhood theorem

Theorem
The map

id®1qy

C(CPY) C(TN(CPY)) = (C(SiH) @ T

is a K-equivalence.

We will write
TN(CP},) = CP}
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Almost a filtration by skeleta

3 pushout
//

TN thm.

n

NS

2n—1
Sii

*J}Su00 preebosH

Idea: CW-structure up to homotopy.
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What homotopy category?

Definition. A cw-Waldhausen category is a category ¢ with pushouts, with an initial and a
terminal object, and two distinguished classes of morphisms, Cof of cofibrations depicted
—— and Weq of weak equivalences depicted —— , such that

® jsomorphisms are both weak equivalences and cofibrations;

® a composition of morfisms in Cof (resp. Weq) is still in Cof (resp. Weq);

® for every object X, the unique morphism from the initial object to X is a cofibration;

® in a pushout diagram of the form ® given any commutative diagram of the form
p f X X Z¢ Y
g[ j ]n lz lz la
Y z X A Y

one has (i) f € Cof, the induced map XLz Y — X U5 Y is a weak
(i) g € Weq <= h € Weq. equivalence.
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The last axiom can be rephrased as follows. Given a commutative diagram

VA AN
A N\

where each square is a pushout, if the horizontal solid lines are weak equivalences, then
the dashed one is a week equivalence as well.

Example
¢ = QSPACE
initial obj = empty space
terminal obj = one-point space
Cof ( —— ) = opposite of surjective unital x-homomorphisms

Weq (—— ) = opposite of K-equivalences
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If € is a cw-Waldhausen category, Ho(%) := ¢ [Weq '] is well-defined.

Morphisms in Weq * o Cof, depicted as = , are called weak cofibrations and are

N

Composition of weak cofibrations:

represented by roofs:

SN
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Weak CW-complexes

Definition. A weak CW-structure is a (finite) sequence of weak cofibrations

X, X1 - Xn 1 Xn

each represented by a roof

SN

Xi-1 X

where X is a finite quantum space, each cofibration is part of a pushout of the form

Sdk71

and each 0y : S ! —— B%* is a boundary map from a K-sphere to a K-ball.
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Computation of K-theory

Every weak CW-structure induces six-term exact sequences (one for each k):
KO(Xie) ————— K®(Xk-1) —— KO(S% 1) /KO (B¥)
d10 do1

KH(S% 1) /KHB*) +—— K} (Xje1) ¢——— K} (Xy)

Theorem. If dy is odd:
KO(Xi—1) = KO(X) & ker 801
K(Xy) = K Xy_1) & im 8oy (only if K(Xy_;) is free)
If dy is even:
K(Xyx) = K%(Xy_1) & im 819 (only if K°(Xy_;) is free)
K (Xy_1) = KY(Xy) @ ker 819
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Quantum projective spaces

Assume that we have a filtration

* = X0 X! xn-t Xr=X

where at each step we attach a single even-dimensional cell.

Theorem

KO(X) =zt K'(X) =0

Both Vaksman-Soibelman and Heegaard quantum projective spaces are special cases of
this class of examples.

In fact, for these we have a weak equivalence of weak filtrations by skeleta

CPY —— CPY —— ... —— CP}! —— CPY,

2 | | |

(CPEI — CP}q — . — (CP{;*1 —— CPy
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What next?

» CW structure of quantum flag manifolds?

> Matassa, Yuncken: (higher rank) graph C*-algebra description for q = 0.

» Brzezifiski, Krahmer, O Buachalla, Strung: quantum flag manifolds as graph
C*-algebras (MFO report 2022). E.g., they claim

oe— OO —> e

> Trimmable higher rank graph C*-algebras?

> ...

Thanks for your attention!
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