# The generation conjecture for regular graphs

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

Będlewo, July 5, 2023

## Content

- 1 The xyz project
- 2 x11
- 3 001
- 4 ×00
- **5** 101
- 6 x10

## Outline

- 1 The xyz project
- 2 x11
- 3 001
- 4 ×00
- **5** 101
- 6 x10

# Singular and regular vertices

Graphs  $E=(E^0,E^1,r,s)$  are given with  $r,s:E^1\to E^0.$  Both  $E^0,E^1$  must be countable.

#### **Definitions**

Let E be a graph and  $v \in E^0$ .

- v is a sink if  $|s^{-1}(\{v\})| = 0$
- v is an infinite emitter if  $|s^{-1}(\{v\})| = \infty$

#### Definition

v is  $singular [\circ]$  if v is a sink or an infinite emitter. v is  $regular [\bullet]$  if it is not singular. A graph is regular when all its vertices are.

$$\circ \Longrightarrow \bullet \bigodot \bullet \longrightarrow \circ$$

# Graph $C^*$ -algebras

#### Definition

The graph  $C^*$ -algebra  $C^*(E)$  is given as the universal  $C^*$ -algebra generated by mutually orthogonal projections  $\{p_v:v\in E^0\}$  and partial isometries  $\{s_e:e\in E^1\}$  with mutually orthogonal ranges subject to the Cuntz–Krieger relations

$$s_e^* s_e = p_{r(e)}$$

$$s_e s_e^* \leqslant p_{s(e)}$$

$$\mathbf{0} \ \, p_v = \sum_{s(e)=v} s_e s_e^* \text{ for every regular } v$$

 $C^*(E)$  is unital precisely when E has finitely many vertices.

## Observation

$$\gamma_z(p_v) = p_v \qquad \gamma_z(s_e) = zs_e$$

induces a gauge action  $\mathbb{T} \mapsto \operatorname{Aut}(C^*(E))$ 

#### Definition

$$\mathfrak{D}_E = \overline{\operatorname{span}}\{s_{\alpha}s_{\alpha}^* \mid \alpha \text{ path of } E\}$$

Note that  $\mathfrak{D}_E$  is commutative and that

$$\mathfrak{D}_E \subseteq \mathfrak{F}_E = \{ a \in C^*(E) \mid \forall z \in \mathbb{T} : \gamma_z(a) = a \}$$

#### Definition

With  $y, z \in \{0, 1\}$  we write

$$(E,F)\in \overline{\mathrm{1yz}}$$

when there exists a \*-isomorphism  $\varphi: C^*(E) \to C^*(F)$  with

- $\varphi \circ \gamma_z = \gamma_z \circ \varphi$  when y = 1
- $\bullet$   $\varphi(\mathfrak{D}_E) = \mathfrak{D}_F$  when z = 1

and

$$(E,F)\in \overline{\operatorname{Oyz}}$$

when there exists a \*-isomorphism  $\varphi: C^*(E) \otimes \mathbb{K} \to C^*(F) \otimes \mathbb{K}$  which additionally satisfies

- $\varphi \circ (\gamma_z \otimes \mathsf{Id}) = (\gamma_z \otimes \mathsf{Id}) \circ \varphi$  when  $\mathsf{y} = 1$
- $\varphi(\mathfrak{D}_E \otimes c_0) = \mathfrak{D}_F \otimes c_0$  when z = 1

# Eight kinds of isomorphism

[Exact, gauge, diagonal]



#### Goals

Interpret geometrically. Find complete invariants.

Connect to dynamics.

Decide decidability.

# Report card

[Exact, gauge, diagonal]

## For regular graphs:

| xyz | GEO | DYN | INV | DEC       | m |
|-----|-----|-----|-----|-----------|---|
| 000 |     | ÷   |     | $\sqrt{}$ | 4 |
| 001 |     |     |     | $\sqrt{}$ | 6 |
| 010 | ÷   |     | ()  | ()        | 7 |
| 011 |     |     | ÷   | ÷         | 9 |
| 100 |     | ÷   |     | $\sqrt{}$ | 3 |
| 101 | ()  |     | ()  | ()        | 7 |
| 110 | ÷   |     | ()  | ÷         | 5 |
| 111 |     |     | ÷   | ÷         | 6 |

## Outline

- The xyz project
- 2 x11
- 3 001
- 4 ×00
- **5** 101
- 6 x10

To a finite graph  $E = (E_0, E_1, r, s)$  we associate  $X_E$  defined as

$$X_E = \{(e_n) \in (E_1)^{\mathbb{Z}} \mid r(e_n) = s(e_{n+1})\}\$$

Note that  $\mathsf{X}_E$  is closed in the topology of  $(E_1)^\mathbb{Z}$  and comes equipped with a shift map  $\sigma: \mathsf{X}_E \to \mathsf{X}_E$  which is a homeomorphism. We call  $\mathsf{X}_E$  a **shift space** (2-sided, of finite type) over the **alphabet**  $E_1$ .

#### Definition

Shift spaces X and Y are conjugate (written  $X \simeq Y$ ) if there is a shift-invariant homeomorphism  $\varphi: X \to Y$ .

# Essentiality



#### Definition

The essential part  $E_{\rm ess}$  of a regular graph is obtained by deleting all sources repeatedly. We say the graph is essential when  $E=E_{\rm ess}$ .

Note that  $X_E = X_{Eess}$ .

# Rigidity

[Exact, gauge, diagonal]

## Theorem [Carlsen-Rout]

For regular essential graphs  ${\cal E}$  and  ${\cal F}$ , the following are equivalent

- $\bullet (E,F) \in \overline{011}$
- $2 X_E \simeq X_F$ .

# Outsplitting

## Move (O)

Outsplit at any vertex using a partition of outgoing edges into non-empty sets:



#### Invariance

$$\langle (\mathbf{0}) \rangle \subseteq \overline{111}$$

For general (non-regular) graphs, one must also require that at most one set in the partition is infinite.

## Insplitting

## Move (I)

Intsplit at any vertex using a partition of incoming edges into non-empty sets:



#### Invariance

$$\langle (\mathbf{I}) \rangle \subseteq \overline{011}$$

For general (non-regular) graphs one must also require that the vertex is regular.

# Essential rigidity

[Exact, gauge, diagonal]

## Theorem [Carlsen-Rout, Williams]

For regular essential graphs E and F, the following are equivalent

- $\bullet (E,F) \in \overline{011}$
- $2 X_E \simeq X_F$
- $(E,F) \in \langle (\mathbf{O}), (\mathbf{I}) \rangle$

## Add source

## Move (S)

Add a new source anywhere



### General invariance

$$\langle (S) \rangle \subseteq \overline{001}$$

### Specialized invariance

 $\langle (S) \rangle \subseteq \overline{011}$  within the class of regular graphs.

Note that  $(E, E_{\text{ess}}) \in \langle (\mathbf{O}), (\mathbf{S}) \rangle$  follows directly from the definition.

### Corollary

For regular graphs E and F, the following are equivalent

- $(E,F) \in \underline{\overline{011}}$
- $\mathbf{2} \ \mathsf{X}_E \simeq \mathsf{X}_F$
- **3**  $(E,F) \in \langle (\mathbf{O}), (\mathbf{I}), (\mathbf{S}) \rangle$

# Generalized insplitting

## Move (I-)

Insplit at any vertex using a partition of incoming edges into possibly empty sets:



#### Invariance

$$\langle (I-) \rangle \subseteq \overline{011}$$

For general (non-regular) graphs one must also require that the vertex is regular.

## Lemma [E-Ruiz]

Within the class of regular graphs,  $\langle (S) \rangle \subseteq \langle (O), (I-) \rangle$ 



#### Theorem 011

For regular graphs E and F, the following are equivalent

- $(E,F) \in \overline{011}$
- $\mathbf{2} \ \mathsf{X}_E \simeq \mathsf{X}_F$
- $\bullet (E,F) \in \langle (\mathbf{O}), (\mathbf{I}-) \rangle$

### Report card 011

Interpret geometrically.  $\sqrt{\phantom{a}}$  Find complete invariants.  $\div$ 

√ Connect to dynamics.÷ Decide decidability.

To a finite graph  $E = (E_0, E_1, r, s)$  we associate  $\mathsf{X}_E^+$  defined as

$$\mathsf{X}_E^+ = \{(e_n) \in (E_1)^{\mathbb{N}} \mid r(e_n) = s(e_{n+1})\}$$

We call  $X_E^+$  a **one-sided shift space** (of finite type).

### Definition

One-sided shift spaces  $X_+$  and  $Y_+$  are *conjugate* if there is a shift-invariant homeomorphism  $\varphi: X_+ \to Y_+$ .

### Definition [Matsumoto]

One-sided shift spaces  $X_+$  and  $Y_+$  are eventually conjugate if there is a homeomorphism  $h: X_+ \to Y_+$  and continuous maps  $k: X_+ \to \mathbb{Z}, \ k': Y_+ \to \mathbb{Z}$  so that

$$\sigma^{k(x)+1}(h(x)) = \sigma^{k(x)}(h(\sigma(x)))$$
  
$$\sigma^{k'(y)+1}(h^{-1}(y)) = \sigma^{k'(y)}(h^{-1}(\sigma(y)))$$

#### Theorem [Matsumoto, Carlsen-Rout]

For regular graphs E and F, the following are equivalent

- $\bullet$   $(E,F) \in \overline{111}$
- $2 X_E^+$  is eventually conjugate to  $X_F^+$ .

## Theorem [Williams]

For essential regular graphs E and F, the following are equivalent

- $\bullet (E,F) \in \langle (\mathbf{O}) \rangle$
- $X_E^+$  is conjugate to  $X_F^+$ .

## Key example [Brix-Carlsen]





are a pair of graphs in  $\overline{111}\setminus\langle (\mathbf{O})\rangle$ .

## Insplitting

## Move (I+)

Insplit at any vertex using a partition of incoming edges into possibly empty sets, but with the same number of sets:



#### Invariance

$$\langle (I+) \rangle \subseteq \overline{111}$$

## Theorem 111 [Matsumoto, Carlsen-Rout, Brix]

For regular graphs E and F, the following are equivalent

- $\bullet$   $(E,F) \in \overline{111}$
- $X_E^+$  is eventually conjugate to  $X_E^+$
- $(E,F) \in \langle (\mathbf{O}), (\mathbf{I}+) \rangle$

#### Report card 111

Interpret geometrically.  $\sqrt{\phantom{a}}$ 

 $\sqrt{\text{Connect to dynamics}}$ .

Find complete invariants. ÷

÷ Decide decidability.

## Outline

- The xyz project
- 2 x11
- 3 001
- 4 ×00
- **5** 101
- 6 x10

### Definition

The suspension flow SX of a two-sided shift space X is  $X \times \mathbb{R}/\sim$  with

$$(x,t) \sim (\sigma(x), t-1)$$

Note that SX has a canonical  $\mathbb{R}$ -action.

#### **Definitions**

X is flow equivalent to Y (written  $X\sim_{\mathsf{fe}} Y$ ) if there is an orientation-preserving homeomorphism  $\psi:SX\to SY$ 

## Reduce at vertex not supporting a loop

## Move (R)

Delete a regular vertex not supporting a loop, joining transitional edges



### Invariance

 $\langle (R) \rangle \subseteq \overline{001}$ 

### Theorem [Parry-Sullivan]

For regular essential graphs  ${\cal E}$  and  ${\cal F}$ , the following are equivalent

- $\bullet$   $X_E \sim_{\mathsf{fe}} X_F$ .
- $(E,F) \in \langle \simeq, (R) \rangle$

## Key example [Parry-Sullivan, Bowen-Franks, Cuntz, Rørdam]



are a pair of graphs in  $\overline{000} \setminus \sim_{\text{fe}}$ .

## Theorem [Matsumoto-Matui, Carlsen-E-Ortega-Restorff]

For regular essential graphs E and F, the following are equivalent

- $\bullet$   $X_E \sim_{\mathsf{fe}} X_F$ .
- $(E,F) \in \overline{001}$

### Theorem [Boyle-Huang, Boyle-Steinberg]

When (E,F) is a pair of regular essential graphs in standard form, the following are equivalent

- $\bullet$   $X_E \sim_{\mathsf{fe}} X_F$ .
- $\exists U, V \in \operatorname{SL}_{\nabla}(\mathbb{Z}) : U(\mathsf{A}_E 1) = (\mathsf{A}_F 1)V$

and is a decidable property.

### Theorem 001

For regular graphs E and F, the following are equivalent

- $\bullet (E,F) \in \overline{001}$
- $oldsymbol{2}$   $X_E$  is flow equivalent to  $X_F$
- $(E,F) \in \langle (\mathbf{O}), (\mathbf{I}-), (\mathbf{R}) \rangle$

When (E,F) is in standard from, they are further equivalent to

 $\exists U, V \in \operatorname{SL}_{\nabla}(\mathbb{Z}) : U(\mathsf{A}_E - 1) = (\mathsf{A}_F - 1)V$ 

which is decidable.

### Report card 001

Interpret geometrically.  $\sqrt{}$  Find complete invariants.  $\sqrt{}$ 

 $\sqrt{\text{Connect to dynamics.}}$  $\sqrt{\text{Decide decidability.}}$ 

## Outline

- The xyz project
- 2 x11
- 3 001
- 4 ×00
- **5** 101
- 6 x10

## Cuntz splice

# Move (C)

"Cuntz splice" on a vertex supporting two cycles



#### Invariance

$$\langle (C) \rangle \subseteq \overline{000}$$

## Move (P)

"Butterfly move" on a vertex supporting a single cycle emitting only singly to vertices supporting two cycles



#### Invariance

$$\langle (P) \rangle \subseteq \overline{000}$$

### Theorem 000 [E-Restorff-Ruiz-Sørensen]

For regular graphs E and F, the following are equivalent

- $(E, F) \in \overline{000}$
- **2**  $(E,F) \in \langle (O), (I-), (R), (C), (P) \rangle$

When (E,F) is in standard from, they are further equivalent to

 $\exists U, V \in \operatorname{GL}_{\nabla}(\mathbb{Z}) : U(\mathsf{A}_E - 1) = (\mathsf{A}_F - 1)V$ 

which is decidable.

#### Report card 000

Interpret geometrically.  $\sqrt{}$  Find complete invariants.  $\sqrt{}$ 

 $\div$  Connect to dynamics.  $\sqrt{\text{Decide decidability}}$ .

## Exact moves



"Cuntz splice" on a vertex supporting two cycles



## Move (P+)

"Butterfly move" on a vertex supporting a single cycle emitting only singly to vertices supporting two cycles



## Move (R+)

Delete a regular vertex not supporting a loop, joining transitional edges and retaining outgoing edges at a new source



#### Invariance

$$\langle (R+) \rangle \subseteq \overline{101}, \langle (C+), (P+) \rangle \subseteq \overline{100}$$

## Theorem 100 [Arklint-E-Ruiz]

For regular graphs E and F, the following are equivalent

- $\bullet (E, F) \in \overline{100}$
- **2**  $(E,F) \in \langle (O), (I+), (R+), (C+), (P+) \rangle$

When  $\left(E,F\right)$  is in augmented standard from, they are further equivalent to

 $\exists U, V \in \mathrm{GL}_{\mathbb{Z},1}(\mathbb{Z}) : U(\mathsf{A}_E - 1) = (\mathsf{A}_F - 1)V$ 

which is decidable.

#### Report card 100

Interpret geometrically.  $\sqrt{}$  Find complete invariants.  $\sqrt{}$ 

÷ Connect to dynamics.
 √ Decide decidability.

## Outline

- The xyz project
- 2 x11
- 3 001
- 4 ×00
- **5** 101
- 6 x10

# The generation conjecture for regular graphs

|      | Х | у | z |
|------|---|---|---|
| (O)  | 1 | 1 | 1 |
| (l+) | 1 | 1 | 1 |
| (I–) | 0 | 1 | 1 |
| (R+) | 1 | 0 | 1 |
| (C+) | 1 | 0 | 0 |
| (P+) | 1 | 0 | 0 |

| 000 | $\langle (O), (I-), (R+), (C+), (P+) \rangle$ |
|-----|-----------------------------------------------|
| 001 | $\langle (O), (I-), (R+) \rangle$             |
| 010 | ?                                             |
| 011 | ⟨(O), (I−)⟩                                   |
| 100 | $\langle (O), (I+), (R+), (C+), (P+) \rangle$ |
| 101 | ?                                             |
| 110 | ?                                             |
| 111 | $\langle (0), (I+) \rangle$                   |

## Rigidity

[Exact, gauge, diagonal]

## Definition [Matsumoto]

One-sided shift spaces  $X_+$  and  $Y_+$  are continuous orbit equivalent if there is a homeomorphism  $h: X_+ \to Y_+$  and continuous maps  $k, \ell: X_+ \to \mathbb{Z}, \ k', \ell': Y_+ \to \mathbb{Z}$  so that

$$\begin{split} \sigma^{\ell(x)}(h(x)) &= \sigma^{k(x)}(h(\sigma(x))) \\ \sigma^{\ell'(y)}(h^{-1}(y)) &= \sigma^{k'(y)}(h^{-1}(\sigma(y))) \end{split}$$

### Theorem [Matsumoto-Matui, Carlsen-E-Ortega-Restorff]

For regular graphs E and F, the following are equivalent

- $\bullet$   $X_E^+$  is continuous orbit equivalent to  $X_E^+$
- $(E, F) \in \overline{101}$

## Theorem [Arklint-E-Ruiz, cf. Carlsen-Ortega-Restorff]

When E and F are regular graphs, the following are equivalent

- **1**  $(E,F) \in \langle (\mathbf{0}), (\mathbf{I+}), (\mathbf{R+}) \rangle$
- $oldsymbol{\circ}$  There exist a pair (E',F') of graphs in standard form so that
  - $(E, E') \in \langle (\mathbf{0}), (\mathbf{R}+) \rangle$
  - $(F,F) \in \langle (0), (R+) \rangle$
  - $\exists U, V \in \mathrm{SL}_{\nabla,1}(\mathbb{Z}) : U(\mathsf{A}_{E'} 1) = (\mathsf{A}_{F'} 1)V$

## The gauge simple case

#### **Observation**

When E is regular,  $C^*(E)$  has only trivial gauge-invariant ideals precisely when  $E_{\rm ess}$  is strongly connected.



#### Theorem 101

For regular graphs E and F defining gauge simple  $C^*$ -algebras, the following are equivalent

- $\bullet (E, F) \in \overline{101}$
- $(E,F) \in \overline{100} \cap \overline{001}$
- $3 X_E$  is continuous orbit equivalent to  $X_F$
- **4**  $(E,F) \in \langle (\mathbf{O}), (\mathbf{I+}), (\mathbf{R+}) \rangle$

When (E,F) is in standard form, they are further equivalent to

- **5**  $\exists U, V \in \text{SL}_{\neg,1}(\mathbb{Z}) : U(\mathsf{A}_E 1) = (\mathsf{A}_F 1)V$
- $\bullet \exists U', V' \in GL_{\nabla,1}(\mathbb{Z}) : U'(\mathsf{A}_E 1) = (\mathsf{A}_F 1)V'$
- $\exists U'', V'' \in \operatorname{SL}_{\nabla}(\mathbb{Z}) : U''(\mathsf{A}_E 1) = (\mathsf{A}_F 1)V''$

which are decidable.

### Report card 101

Interpret geometrically. ( $\sqrt{}$ )  $\sqrt{}$  Connect to dynamics. Find complete invariants. ( $\sqrt{}$ )  $\sqrt{}$  Decide decidability.





is a pair of graphs in

$$(\overline{100} \cap \langle (S) \rangle) \setminus \langle (O), (I+), (R+) \rangle$$

## Outline

- The xyz project
- 2 x11
- 3 001
- 4 ×00
- **5** 101
- 6 x10

## Fixed point algebra



#### Theorem

 $\mathfrak{F}_E$  is itself a corner of a graph  $C^*$ -algebra which is AF. It is best described as  $p^0C^*(E\times_1\mathbb{Z})p^0$  with  $p^0$  and  $E\times_1\mathbb{Z}$  as indicated below.





#### Observation

Note that  $C^*(E \times_1 \mathbb{Z})$  comes with a shift map  $\sigma \in \operatorname{Aut}(C^*(E \times_1 \mathbb{Z}))$ .

## Definition [Krieger]

The dimension triple of E is

$$\mathcal{DT}(E) = (K_0(C^*(E \times_1 \mathbb{Z})), K_0(C^*(E \times_1 \mathbb{Z}))_+, \sigma_*)$$

#### **Definition**

The dimension quadruple of E is

$$\mathcal{DQ}(E) = (K_0(C^*(E \times_1 \mathbb{Z})), K_0(C^*(E \times_1 \mathbb{Z}))_+, \sigma_*, [p^0])$$

### Theorem [Bratteli-Kishimoto, E-Szabó]

The following are equivalent for essential regular graphs defining gauge simple  $C^{*}$ -algebras

- $\bullet (E, F) \in \overline{010}$
- $oldsymbol{2}$   $oldsymbol{X}_E$  and  $oldsymbol{X}_F$  are shift equivalent

This would generalize by a Hazrat conjecture.

## Theorems [Kim-Roush]

- There exist graphs E, F defining gauge simple  $C^*$ -algebras so that  $X_E$  and  $X_F$  are shift equivalent but not conjugate.
- $\mathcal{DT}(E) \simeq \mathcal{DT}(F)$  is a decidable property.

## Theorem [Bratte<u>l</u>i-Kishimot<u>o, E-Szabó, Brix]</u>

The following are equivalent for regular graphs defining gauge simple  $C^*$ -algebras

- $\bullet (E, F) \in \overline{110}$

This would generalize by another Hazrat conjecture.

# The Krieger move

### Definition

We say that E is obtained from F by a **(K+)** move when

$$\mathcal{DQ}(E) \simeq \mathcal{DQ}(F)$$

[Exact, gauge, diagonal]

#### Theorem 010

The following are equivalent for regular graphs defining gauge simple  $C^{\ast}$ -algebras

- $\bullet (E, F) \in \overline{010}$
- $2 X_E$  and  $X_F$  are shift equivalent
- **3**  $(E,F) \in \langle (\mathbf{O}), (\mathbf{I}-), (\mathbf{K}+) \rangle$

#### Report card 010

Interpret geometrically.  $\div$  Find complete invariants. ( $\sqrt{\ }$ )

 $(\sqrt{\ })$  Connect to dynamics.  $(\sqrt{\ })$  Decide decidability.

#### Theorem 110

The following are equivalent for regular graphs defining gauge simple  $C^{\ast}$ -algebras

- **1** (*E*, *F*) ∈  $\overline{110}$
- $\mathbf{2} \ \mathsf{X}_E$  and  $\mathsf{X}_F$  are balanced shift equivalent
- **3**  $(E, F) \in \langle (\mathbf{0}), (\mathbf{I}+), (\mathbf{K}+) \rangle$
- $(E,F) \in \langle (\mathbf{K}+) \rangle$

#### Report card 110

Interpret geometrically. ÷

 $(\sqrt{\ })$  Connect to dynamics.

Find complete invariants.  $(\sqrt{\ })$ 

 $\div$  Decide decidability.

# Status for regular graphs (defining simple $C^*$ -algebras)

|      | Х | у   | Z |
|------|---|-----|---|
| (O)  | 1 | 1   | 1 |
| (l+) | 1 | 1   | 1 |
| (I–) | 0 | 1   | 1 |
| (R+) | 1 | 0   | 1 |
| (C+) | 1 | 0   | 0 |
| (P+) | 1 | 0   | 0 |
| (K+) | 1 | (1) | 0 |

| 000 | $\langle (O), (I-), (R+), (C+), (P+) \rangle$ |
|-----|-----------------------------------------------|
| 001 | $\langle (O), (I-), (R+) \rangle$             |
| 010 | $(\langle (O), (I-), (K+) \rangle)$           |
| 011 | ⟨ <b>(</b> 0 <b>)</b> ,(I− <b>)</b> ⟩         |
| 100 | $\langle (O), (I+), (R+), (C+), (P+) \rangle$ |
| 101 | $(\langle (O), (I+), (R+) \rangle)$           |
| 110 | $(\langle (O), (I+), (K+) \rangle)$           |
| 111 | $\langle (0), (I+) \rangle$                   |

We know no counterexample even in the non-regular case, but then one must add (S) as a  $\overline{001}$  move.