Algebras associated with one-sided subshifts over arbitrary alphabets

Gilles Gonçalves de Castro (Joint work with G. Boava, D. Gonçalves and D. van Wyk)

Universidade Federal de Santa Catarina

Banach Center Conference *Graph Algebras* 03.07.2023 - 07.07.2023 | Będlewo, Poland

Cuntz-Krieger algebras and some generalisations

- Cuntz algebras (1977) Simple infinite C*-algebras.
- Cuntz-Krieger algebras (1980) C*-algebras for topological Markov chains.
- Graph C*-algebras (Kumjian, Pask, Raeburn, Renault 1997).
- C*-Algebras for two-sided subshifts (Matsumoto 1997, Carlsen-Matsumoto 2004)
- Exel-Laca algebras for infinite matrices of 0-1 (1999). ¹
- Ultragraph C*-algebras (Tomforde 2003).
- C*-algebras of labelled graphs (Bates, Pask 2007).
- C*-algebras for one-sided subshifts (Carlsen 2008).
- C*-algebras of Boolean dynamical systems (Carlsen, Ortega, Pardo 2017).
- C*-algebras of generalised Boolean dynamical systems (Carlsen, Kang 2020).

Gilles de Castro (UFSC)

Algebras for one-sided subshifts

¹It can be presented with infinite sum relations (de C., Boava - 2022).

Tools for defining and studying these algebras

- Representations.
- Universal C*-algebras.
- Groupoids.
- Partial actions.
- Crossed products.
- C*-correspondences (Cuntz-Pimsner algebras).
- Inverse semigroups.

The purely algebraic setting

- Leavitt rings/algebras (Late 1950s, early 1960s) rings without the IBN property.
- Purely algebraic analogue of Cuntz-Krieger algebras (Ara, Gonzáles-Barros, Goodearl, Pardo - 2004).
- Leavitt path algebras for graphs (Ara, Pino 2005).
- Algebras for Boolean dynamical systems (Clark, Exel, Pardo -2018).
- Leavitt path algebras for ultragraphs (Imanfar, Pourabbas, Larki 2020).
- Leavitt path algebras for labelled graphs (Boava, de C., Gonçalves, van Wyk - 2023).
- Algebras associated with one-sided subshifts over arbitrary alphabets (Boava, de C., Gonçalves, van Wyk 2022*).

C*-algebra of graphs

Let \mathcal{E} be a graph. The graph C*-algebra $C^*(\mathcal{E})$ is the universal C*-algebra generated by mutually orthogonal projections $\{p_v\}_{v\in\mathcal{E}^0}$ and partial isometries with mutually orthogonal final projections $\{s_e\}_{e\in\mathcal{E}^1}$ satisfying the relations:

CK1
$$s_e^* s_e = p_{r(e)}$$
 for all $e \in \mathcal{E}^1$,

CK2
$$s_e s_e^* \le p_{s(e)}$$
, for all $e \in \mathcal{E}^1$,

CK3
$$p_v = \sum_{e \in s^{-1}(v)} s_e s_e^*$$
, for all $v \in \mathcal{E}_{rg}^0$.

If we do not consider relation CK3, we have the Toeplitz graph C*-algebra $\mathcal{T}C^*(\mathcal{E})$.

Partial actions

Definition

A partial action of G on X is a pair

$$\theta = \left(\left\{ \mathsf{D}_{\mathsf{g}} \right\}_{\mathsf{g} \in \mathsf{G}}, \left\{ \theta_{\mathsf{g}} \right\}_{\mathsf{g} \in \mathsf{G}} \right)$$

consisting of a collection $\{D_g\}_{g\in G}$ of subsets of X, and a collection $\{\theta_g\}_{g\in G}$ of maps $\theta_g: D_{g^{-1}} \to D_g$, such that

$$D_1 = X, \text{ and } \theta_1 = Id_X,$$

2 $\theta_g \circ \theta_h \leq \theta_{gh}$, for all g and h in G.

A topological partial action is a partial action such that X is a (LCH) topological space, each D_g is open and each θ_g is continuous.

A C*-algebraic partial action is a partial action such that X is a C*-algebra, each D_g is a closed two-sided ideal and each θ_g is a *-homomorphism.

Gilles de Castro (UFSC)

C*-algebra of graphs - the partial action picture

Let $P_{\mathcal{E}} = \mathcal{E}^* \cup \mathcal{E}^{\infty}$. For each $\alpha \in \mathcal{E}^*$ and $F \subseteq s^{-1}(r(\alpha))$ finite, define

 $Z(\alpha, F) = \{ \alpha \beta \in P_{\mathcal{E}} : \beta \in P_{\mathcal{E}}, r(\alpha) = s(\beta) \text{ and } \beta_1 \notin F \text{ if } |\beta| \ge 1 \}.$

For simplicity, we write $Z(\alpha) = Z(\alpha, \emptyset)$.

The family of sets of the form $Z(\alpha, F)$ is a basis for a topology on $P_{\mathcal{E}}$ making it a totally disconnected, locally compact Hausdorff space.

For each $e \in \mathcal{E}^1$, the map

is a homeomorphism between open subsets of $P_{\mathcal{E}}$. This is enough to define a topological partial action φ of the free group \mathbb{F} generated by \mathcal{E}^1 on $P_{\mathcal{E}}$.

Considering the inverse semigroup $\mathcal{I}(P_{\mathcal{E}})$ of partially defined bijections on $P_{\mathcal{E}}$, we see that:

- $Id_{Z(v)} \circ Id_{Z(w)} = \emptyset$ for $v, w \in \mathcal{E}^0$ such that $v \neq w$ (mutually orthogonal projections),
- *Id_{Z(e)}* ∘ *Id_{Z(f)}* = Ø for *e*, *f* ∈ E¹ such that *e* ≠ *f* (mutually orthogonal final projections),
- $\varphi_e^{-1} \circ \varphi_e = Id_{Z(r(e))}$ for $e \in \mathcal{E}^1$ (CK1),
- $\varphi_e \circ \varphi_e^{-1} = Id_{Z(e)} \leq Id_{Z(s(e))}$ for $e \in \mathcal{E}^1$ (CK2).

What about (CK3)?

It is not true that, for $v \in \mathcal{E}_{rg}^{0}$,

$$\mathit{Id}_{Z(v)} = \bigvee_{e \in s^{-1}(v)} \mathit{Id}_{Z(e)}$$

because $v \in Z(v)$, but $v \notin \bigcup_{e \in s^{-1}(v)} Z(e)$.

In order to find an analogue of (CK3) we need to restrict to the boundary path space of \mathcal{E} :

 $\partial \mathcal{E} = \{ \alpha \in \mathcal{E}^* : \mathbf{r}(\alpha) \in \mathcal{E}_{sg}^{\mathbf{0}} \} \cup \mathcal{E}^{\infty}$

as a subspace of $P_{\mathcal{E}}$. (It can be found using point-free topology by imposing the relation $Z(v) = \bigcup_{e \in s^{-1}(v)} Z(e)$ on the topology of $P_{\mathcal{E}}$ - de C., 2021).

One can then restrict the partial action φ to $\partial \mathcal{E}$.

Theorem (Carlsen, Larsen - 2016)

If $\widehat{\varphi}$ is the dual partial action on $C_0(\partial \mathcal{E})$ (resp. $C_0(P_{\mathcal{E}})$), then $C^*(\mathcal{E}) \cong C_0(\partial \mathcal{E}) \rtimes_{\widehat{\varphi}} \mathbb{F}$ (resp. $\mathcal{T}C^*(\mathcal{E}) \cong C_0(P_{\mathcal{E}}) \rtimes_{\widehat{\varphi}} \mathbb{F}$).

Remark

A similar construction was done independently by Gonçalves, Royer (2014) in the context of Leavitt path algebras.

Gilles de Castro (UFSC)

Algebras for one-sided subshifts

Subshifts over finite alphabets

Let \mathcal{A} be a non-empty finite set with the discrete topology. The set $\mathcal{A}^{\mathbb{N}}$ is a compact Hausdorff space. For an element $x \in \mathcal{A}^{\mathbb{N}}$ a block of x is a finite subsequence $x_i \cdots x_j$ for $i, j \in \mathbb{N}$ (if i > j, it is the empty block ω). The shift map is given by

$$\sigma: \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$$
$$x_0 x_1 x_2 \dots \longmapsto x_1 x_2 x_3 \dots$$

A one-sided subshift is a closed subset $X \subseteq A^{\mathbb{N}}$ that is invariant by the shift map, that is, $\sigma(X) = X$.

If \mathcal{F} is a family of forbidden blocks, we can define $X_{\mathcal{F}}$ as the subset of $\mathcal{A}^{\mathbb{N}}$ such that no element of \mathcal{F} appears as a block of an element of $X_{\mathcal{F}}$.

Theorem

For any family \mathcal{F} , $X_{\mathcal{F}}$ is a subshift. Reciprocally, every subshift is of the form $X_{\mathcal{F}}$ for some family \mathcal{F} .

Gilles de Castro (UFSC)

Subshifts over arbitrary alphabets

Now let \mathcal{A} be any non-empty set. As before, for \mathcal{F} , a family of forbidden blocks, we define $X_{\mathcal{F}}$ as the subset of $\mathcal{A}^{\mathbb{N}}$ such that no element of \mathcal{F} appears as a block of an element of $X_{\mathcal{F}}$. We define one-sided subshift as subset X of $\mathcal{A}^{\mathbb{N}}$ that is equal to $X_{\mathcal{F}}$ for some family \mathcal{F} .

Remark

In general, a one-sided subshift X is not a locally compact space, seen as a subspace of $\mathcal{A}^{\mathbb{N}}$ with the natural topology. For this reason, for now, we look at X simply from a combinatorial perspective.

Given a subshift X, the language of X, denoted by \mathcal{L}_X , is the set of all words that appear as a block of an element of X.

A partial action

Let $\mathbb F$ be the free group generated by $\mathcal A.$ For each $a\in \mathcal A,$ consider the sets

 $F_a = \{x \in X : ax \in X\},$ $Z_a = \{x \in X : x_0 = a\}.$

Define also the function

which is a bijection. As in the graph case, this is enough to define a partial action θ of \mathbb{F} on *X*.

Remark

Even in the finite alphabet case, in general, θ is not a topological partial action because F_a may fail to be an open subset of *X*.

For each $\alpha, \beta \in \mathcal{L}_X$, let

 $C(\alpha,\beta) = \{\beta x \in X : \alpha x \in X\},\$

so, in particular, $Z_{\alpha} = C(\omega, \alpha)$ and $F_{\alpha} = C(\alpha, \omega)$ for every $\alpha \in \mathcal{L}_X$, and $C(\omega, \omega) = X$. If $\alpha \beta^{-1}$ is in reduced form in \mathbb{F} , then $\theta_{\alpha\beta^{-1}}$ is such that

$$\begin{array}{ccc} \theta_{\alpha\beta^{-1}} : & \mathcal{C}(\alpha,\beta) & \longrightarrow & \mathcal{C}(\beta,\alpha) \\ & \beta \mathbf{X} & \longmapsto & \alpha \mathbf{X} \end{array}$$

In general,

$$heta_eta\circ heta_{lpha^{-1}}\circ heta_lpha\circ heta_{eta^{-1}}= extsf{ld}_{\mathcal{C}(lpha,eta)}.$$

Generalised Boolean algebras

We can define a (generalised) Boolean algebra as relatively complemented distributive lattice with a minimum. Algebraically, it is a set \mathcal{B} with operations \lor, \land, \setminus and an element 0 satisfying several axioms.

Example

- If X is a Hausdorff space, then set of compact-open sets is a Boolean algebra with order given by inclusion.
- If *A* is a commutative C*-algebra, then the set of projections of *A* is a Boolean algebra with the usual order: $p \le q$ if and only if pq = p.

The two examples are connected in the following way: if X is a LCH space and $A = C_0(X)$, then for every compact-open set $U \subseteq X$, we have that 1_U is a projection in $C_0(X)$. And in fact, it is a Boolean algebra isomorphism.

For a graph \mathcal{E} , there is a very important commutative subalgebra of $C^*(\mathcal{E})$, namely, the diagonal subalgebra:

 $D(\mathcal{E}) = \overline{\operatorname{span}} \{ s_{\alpha} s_{\alpha}^* : \alpha \in \mathcal{E}^* \} \cong C_0(\partial \mathcal{E}).$

Relation (CK3) is just part of the isomorphism of the Boolean algebra of compact-open sets of $\partial \mathcal{E}$ (which is generated by cylinder sets $Z(\alpha)$ for $\alpha \in \mathcal{E}^*$) and projections in $D(\mathcal{E})$.

Boolean algebras for subshifts

Given a subshift X over an alphabet \mathcal{A} , we define two Boolean algebras inside $\mathcal{P}(X)$ (the power set of X), the main difference being if we ask X itself to be in the Boolean algebra or not:

- \mathcal{U} is the Boolean algebra generated by all $C(\alpha, \beta)$ for $\alpha, \beta \in \mathcal{L}_X$.
- \mathcal{B} is the Boolean algebra generated by all $C(\alpha, \beta)$ for $\alpha, \beta \in \mathcal{L}_X$ that are not simultaneously the empty word.

If \mathcal{A} is finite, $\mathcal{U} = \mathcal{B}$ because $X = \bigcup_{a \in \mathcal{A}} Z_a$.

Ott-Tomforde-Willis subshifts Let $\tilde{\mathcal{A}} := \mathcal{A} \cup \{\infty\}$ and

 $\Sigma_{\mathcal{A}} = \{ (x_i)_{i \in \mathbb{N}} \in \tilde{\mathcal{A}}^{\mathbb{N}} : x_i = \infty \text{ implies } x_{i+1} = \infty \}.$

In particular $\vec{0} := (\infty \infty \cdots) \in \Sigma_A$. There is a topology generated by the generalised cylinder sets:

 $\mathcal{Z}(\alpha, F) = \{ y \in \Sigma_{\mathcal{A}} : \ y_i = \alpha_i \ \forall \ \mathbf{1} \le i \le |\alpha|, \ y_{|\alpha|+1} \notin F \},\$

where $\alpha \in \mathcal{A}^*$ and $F \subseteq \mathcal{A}$ is finite. With this topology, $\Sigma_{\mathcal{A}}$ is compact.

Given a subshift *X*, the corresponding Ott-Tomforde-Willis subshift X^{OTW} is the closure of *X* in Σ_A . If *A* is finite, then $X^{OTW} = X$.

There is a natural shift map on X^{OTW} that is continuos, except at $\vec{0}$ if $\vec{0} \in X^{OTW}$.

Remark

 X^{OTW} can be defined directly from a family of forbidden words.

Gilles de Castro (UFSC)

Algebras for one-sided subshifts

C*-algebras associated with one-sided subshifts

Definition

We define $\widetilde{\mathcal{O}}_X$ as the universal unital C*-algebra generated by projections $\{p_A : A \in \mathcal{U}\}$ and partial isometries $\{s_a : a \in \mathcal{A}\}$ subject to the relations:

• $p_X = 1$, $p_{A \cap B} = p_A p_B$, $p_{A \cup B} = p_A + p_B - p_{A \cap B}$ and $p_{\emptyset} = 0$, for every $A, B \in \mathcal{U}$;

• $s_{\beta}s_{\alpha}^*s_{\alpha}s_{\beta}^* = p_{C(\alpha,\beta)}$ for all $\alpha, \beta \in \mathcal{L}_X$, where $s_{\omega} := 1$ and, for $\alpha = \alpha_1 \dots \alpha_n \in \mathcal{L}_X$, $s_{\alpha} := s_{\alpha_1} \dots s_{\alpha_n}$ and $s_{\alpha}^* := s_{\alpha_n}^* \dots s_{\alpha_1}^*$.

There is a natural gauge action on $\widetilde{\mathcal{O}}_X$ given by $\gamma_z(p_A) = p_A$ and $\gamma_z(s_a) = zs_a$ for $z \in \mathbb{T}$, $A \in \mathcal{U}$ and $a \in \mathcal{A}$.

Definition

We define the subshift algebra \mathcal{O}_X as the universal C*-algebra generated by projections $\{p_A : A \in \mathcal{B}\}$ and partial isometries $\{s_a : a \in \mathcal{A}\}$ subject to the relations:

- $p_{A\cap B} = p_A p_B$, $p_{A\cup B} = p_A + p_B p_{A\cap B}$ and $p_{\emptyset} = 0$, for every $A, B \in \mathcal{B}$;
- $s_{\beta}s_{\alpha}^*s_{\alpha}s_{\beta}^* = p_{C(\alpha,\beta)}$ for all $\alpha, \beta \in \mathcal{L}_X \setminus \{\omega\}$, where for $\alpha = \alpha_1 \dots \alpha_n \in \mathcal{L}_X \setminus \{\omega\}$, $s_{\alpha} := s_{\alpha_1} \dots s_{\alpha_n}$ and $s_{\alpha}^* := s_{\alpha_n}^* \dots s_{\alpha_1}^*$;

•
$$s_{\alpha}^* s_{\alpha} = p_{C(\alpha,\omega)}$$
 for all $\alpha \in \mathcal{L}_X \setminus \{\omega\}$;

•
$$s_{\beta}s_{\beta}^* = p_{C(\omega,\beta)}$$
 for all $\beta \in \mathcal{L}_X \setminus \{\omega\}$.

Proposition

For any subshift X, either $\widetilde{\mathcal{O}}_X = \mathcal{O}_X$, or $\widetilde{\mathcal{O}}_X$ is the minimal unitisation of \mathcal{O}_X .

Examples

- Let *I* be a set of indices and A = (A_{ij})_{i,j∈I} a 0-1 matrix with no identically zero rows. We let
 X_A = {(x_n) ∈ I^N : A_{x_nx_{n+1}} = 1 for all n ∈ N}. Then we obtain the two versions of Exel-Laca algebras: Õ_A ≅ Õ_{X_A} and O_A ≅ O_{X_A}.
- Let ε be a graph with no sinks and with no vertex that is simultaneously a source and an infinite emitter. Let X_ε = ε[∞] be the associated one-sided edge subshift of ε. Then, O_{X_ε} ≅ C^{*}(ε).

Two interesting commutative subalgebras

We now focus on the unital C*-algebra $\widetilde{\mathcal{O}}_X$. We consider the diagonal subalgebra

 $D(X) := \overline{\operatorname{span}} \{ s_{\alpha} p_{A} s_{\alpha}^{*} : \alpha \in \mathcal{L}_{X}, A \in \mathcal{U} \} = \overline{\operatorname{span}} \{ p_{A} : A \in \mathcal{U} \} \cong C(\widehat{\mathcal{U}}),$

where $\hat{\mathcal{U}}$ is the Stone dual of \mathcal{U} . We also consider

 $\overline{\operatorname{span}}\{s_{\alpha}s_{\alpha}^*: \alpha \in \mathcal{L}_X\} \cong C(X^{OTW}).$

For the groupoid model, we use $\hat{\mathcal{U}}$ as the unit space either via a local homeomorphism or via a partial action by the free group generated by \mathcal{A} .

Topological conjugacy for OTW-subshifts

Definition

Let X_1^{OTW} and X_2^{OTW} be OTW-subshifts over alphabets \mathcal{A}_1 and \mathcal{A}_2 , respectively. A map $h: X_1^{OTW} \to X_2^{OTW}$ is a conjugacy if it is a homeomorphism, commutes with the shift and is length-preserving. If there is a conjugacy, we say that X_1^{OTW} and X_2^{OTW} are topologically conjugate.

Theorem (Boava, de C., Gonçalves, van Wyk - WIP)

Let X_1 and X_2 be two subshifts over alphabets A_1 and A_2 respectively. Let X_1^{OTW} and X_2^{OTW} be the corresponding OTW-subshifts.

- If X_1^{OTW} and X_2^{OTW} are topologically conjugate, then there exists a diagonal-preserving gauge-invariant isomorphism between $\widetilde{\mathcal{O}}_{X_1}$ and $\widetilde{\mathcal{O}}_{X_2}$.
- Reciprocally, if there exists a diagonal-preserving isomorphism between $\widetilde{\mathcal{O}}_{X_1}$ and $\widetilde{\mathcal{O}}_{X_2}$ with some extra conditions, then X_1^{OTW} and X_2^{OTW} are topologically conjugate.

Remark

The purely algebraic result is done in arXiv:2211.02148 [Boava, de C., Gonçalves, van Wyk].

A few words about the extra conditions

Let *X* be a subshift over an alphabet A. For each $M \subseteq A$, define

$$\begin{array}{rccc} \tau_{\mathcal{M}} : & \widetilde{\mathcal{O}}_{\mathcal{X}} & \longrightarrow & \widetilde{\mathcal{O}}_{\mathcal{X}} \\ & \mathcal{Y} & \longmapsto & \sum_{a,b \in \mathcal{M}} s_a y s_b^* \end{array}$$

and

$$e_M = \sum_{a \in M} s_a s_a^*.$$

The converse of the previous theorem uses the maps τ_M and the projections e_M . Moreover, the isomorphism must preserve the corresponding subalgebras $C(X^{OTW})$.

K-theory

We say that a set $A \in \mathcal{U}$ is regular if the set $\{a \in \mathcal{A} : Z_a \cap A \neq \emptyset\}$ is finite and non-empty. The set of regular sets in \mathcal{U} is denoted by \mathcal{U}_{reg} .

For $A \in U$ and $a \in A$, we define the set $r(A, a) = \{x \in X : ax \in A\}$.

Theorem (Bates, Carlsen, Pask - 2017 - taken from the context of labelled graphs C*-algebras)

Let X be a one-sided subshift over an arbitrary alphabet A. Let $(1 - \Phi)$: span_Z { $\chi_A : A \in U_{reg}$ } \rightarrow span_Z { $\chi_A : A \in U$ } be the linear map given by

$$(1 - \Phi) (\chi_{\mathcal{A}}) = \chi_{\mathcal{A}} - \sum_{a: Z_a \cap \mathcal{A} \neq \emptyset} \chi_{r(\mathcal{A}, a)}, \quad \mathcal{A} \in \mathcal{U}_{reg}.$$

Then $K_1(\widetilde{\mathcal{O}}_X)$ is isomorphic to ker $(1 - \Phi)$ and there exists an isomorphism from $K_0(\widetilde{\mathcal{O}}_X)$ to coker $(1 - \Phi)$ which maps $[S^*_{\alpha}S_{\alpha}]_0$ to $\chi_{F_{\alpha}} + \text{Im}(1 - \Phi)$ for each $\alpha \in \mathcal{L}_X$.

Thank you!