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Morphisms of graphs

Definition

A homomorphism f : E → F of graphs is a pair of maps

(f0 : E0 → F 0, f1 : E1 → F 1)

satisfying the conditions:

sF ◦ f1 = f0 ◦ sE , tF ◦ f1 = f0 ◦ tE .

Definition

A path homomorphism of graphs is a map f : FP (E) → FP (F )
satisfying:

1 f(E0) ⊆ F 0,

2 sF ◦ f = f ◦ sE , tF ◦ f = f ◦ tE ,

3 ∀ p, q ∈ FP (E) such that t(p) = s(q) : f(pq) = f(p)f(q).

Note that a path homomorphism of graphs is a homomorphism of
graphs if and only if it preserves the lengths of paths.
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Path algebras

Let k be a field. Consider the vector space

kE := {f ∈ Map(FP (E), k) | f(p) ̸= 0 for finitely many p ∈ FP (E)},

where the addition and scalar multiplication are pointwise. Then
the set of functions {χp}p∈FP (E) given by

χp(q) =

{
1 for p = q

0 otherwise

is a linear basis of kE. Next, we will use {χp}p∈FP (E) to define a
bilinear map:

m : kE × kE −→ kE, m(χp, χq) :=

{
χpq if t(p) = s(q)

0 otherwise
.

The bilinear map m : kE × kE → kE defines an algebra structure
on kE. We call this algebra the path algebra of E.
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Extended graphs and Cohn path algebras

Definition

Let E = (E0, E1, sE , tE) be a graph. The extended graph
Ē := (Ē0, Ē1, sĒ , tĒ) of the graph E is given as follows:

Ē0 := E0, Ē1 := E1 ⊔ (E1)∗, (E1)∗ := {e∗ | e ∈ E1},
∀ e ∈ E1 : sĒ(e) := sE(e), tĒ(e) := tE(e),

∀ e∗ ∈ (E1)∗ : sĒ(e
∗) := tE(e), tĒ(e

∗) := sE(e).

Definition

Let E be a graph and k be a field. The Cohn path algebra Ck(E)
of E is the path algebra kĒ of the extended graph Ē divided by
the ideal generated by

{χe∗χf − δe,fχt(e) | e, f ∈ E1}.
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∗) := sE(e).

Definition

Let E be a graph and k be a field. The Cohn path algebra Ck(E)
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Leavitt path algebras and graph C*-algebras

Definition

Let E be a graph and k be a field. The Leavitt path algebra
Lk(E) of E is the path algebra kĒ of the extended graph Ē
divided by the ideal generated by the union of the following sets:

1 {χe∗χf − δe,fχt(e) | e, f ∈ E1},
2 {

∑
e∈s−1(v) χeχe∗ − χv | v ∈ reg(E)}.

Here reg(E) is the set of all regular vertices of E, and a vertex is
called regular iff it emits at least one edge and at most finitely
many edges.

Definition

Let E be a graph and k = C be a field. Then the formulas

∀ v ∈ E0 : (χv)
∗ := χv , ∀ e ∈ E1 : (χe)

∗ := χe∗ , (χe∗)
∗ := χe ,

define involutions rendering CĒ, CC(E), and LC(E) ∗-algebras.
The universal C*-algebra of LC(E) is called the graph C*-algebra
of E, and denoted by C∗(E).
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A pullback theorem

Theorem (A. Chirvasitu, P.M.H., M. Tobolski)

Let Fi ⊆ Ei, i = 1, 2, be admissible inclusions of graphs such that

1 E1 has no loops, E2 has no egde loops at vertices in E0
2 \ F 0

2 ,
E0

1 = E0
2 is finite, and F 0

1 = F 0
2 ;

2 there is a functor f : E1 → E2 such that: it is id on objects, its
image is the set of all pointed paths (paths whose last edge is not a
loop), and it maps any two different edges to two paths such that
none of them is a prolongation of the other.

Then the induced *-homomorphisms exist and render the diagram

C∗(E1)

yy

f∗

%%

C∗(F1)

f̄∗ %%

C∗(E2)

yy

C∗(F2)

a pullback diagram of unital C*-algebras.
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Covariant conditions

C1 IPG is the category of graphs and path homomorphisms of
graphs that are injective when restricted to vertices.

C2 MIPG is the subcategory of IPG whose morphisms satisfy
f(e) ⪯ f(e′) ⇒ e = e′

when restricted to the sets of edges.

C3 RMIPG is the subcategory of MIPG whose morphisms
satisfy the regularity conditions:
(A) For any v ∈ reg(E), the vertex f(v) emits |s−1

E (v)|-many
positive-length paths p1 , . . . , pnv

, nv := |s−1
E (v)|, whose all edges

begin at regular vertices. Also, we require that the set
FPf(v) := {p1 , . . . , pnv} is constructed in the following way: we

take x ∈ s−1
F (f(v)) and either set it aside as a length-one element

of FPf(v), or extend it by all edges emitted from tF (x). Any thus
obtained path of length two, we either set aside as an element of
FPf(v), or extend it by all edges emitted from its end. Then we
iterate this procedure until we obtain the set FPf(v).

(B) For any v ∈ reg(E), the map f when restricted to s−1
E (v) is a

bijection onto FPf(v).

11/14



Covariant conditions

C1 IPG is the category of graphs and path homomorphisms of
graphs that are injective when restricted to vertices.

C2 MIPG is the subcategory of IPG whose morphisms satisfy
f(e) ⪯ f(e′) ⇒ e = e′

when restricted to the sets of edges.

C3 RMIPG is the subcategory of MIPG whose morphisms
satisfy the regularity conditions:
(A) For any v ∈ reg(E), the vertex f(v) emits |s−1

E (v)|-many
positive-length paths p1 , . . . , pnv

, nv := |s−1
E (v)|, whose all edges

begin at regular vertices. Also, we require that the set
FPf(v) := {p1 , . . . , pnv} is constructed in the following way: we

take x ∈ s−1
F (f(v)) and either set it aside as a length-one element

of FPf(v), or extend it by all edges emitted from tF (x). Any thus
obtained path of length two, we either set aside as an element of
FPf(v), or extend it by all edges emitted from its end. Then we
iterate this procedure until we obtain the set FPf(v).

(B) For any v ∈ reg(E), the map f when restricted to s−1
E (v) is a

bijection onto FPf(v).

11/14



Covariant conditions

C1 IPG is the category of graphs and path homomorphisms of
graphs that are injective when restricted to vertices.

C2 MIPG is the subcategory of IPG whose morphisms satisfy
f(e) ⪯ f(e′) ⇒ e = e′

when restricted to the sets of edges.

C3 RMIPG is the subcategory of MIPG whose morphisms
satisfy the regularity conditions:
(A) For any v ∈ reg(E), the vertex f(v) emits |s−1

E (v)|-many
positive-length paths p1 , . . . , pnv

, nv := |s−1
E (v)|, whose all edges

begin at regular vertices. Also, we require that the set
FPf(v) := {p1 , . . . , pnv} is constructed in the following way: we

take x ∈ s−1
F (f(v)) and either set it aside as a length-one element

of FPf(v), or extend it by all edges emitted from tF (x). Any thus
obtained path of length two, we either set aside as an element of
FPf(v), or extend it by all edges emitted from its end. Then we
iterate this procedure until we obtain the set FPf(v).

(B) For any v ∈ reg(E), the map f when restricted to s−1
E (v) is a

bijection onto FPf(v).

11/14



RMIPG

12/14



Covariant functors

Let k be a field. The following assignments define covariant
functors to the category of k-algebras:

1 ∀ (f : E → F ) ∈ Mor(IPG), p ∈ FP (E) :

kE ∋ χp
f∗7−→ χf(p) ∈ kF ,

2 ∀ (f : E → F ) ∈ Mor(MIPG), p ∈ FP (Ē) :

Ck(E) ∋ [χp]
fC
∗7−→ [χf̄(p)] ∈ Ck(F ),

3 ∀ (f : E → F ) ∈ Mor(RMIPG), p ∈ FP (Ē) :

Lk(E) ∋ [χp]
fL
∗7−→ [χf̄(p)] ∈ Lk(F ).

Here f̄ : FP (Ē) → FP (F̄ ) is the obvious extension of
f : FP (E) → FP (F ).
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Lk(E) ∋ [χp]
fL
∗7−→ [χf̄(p)] ∈ Lk(F ).

Here f̄ : FP (Ē) → FP (F̄ ) is the obvious extension of
f : FP (E) → FP (F ).

13/14



Covariant functors

Let k be a field. The following assignments define covariant
functors to the category of k-algebras:

1 ∀ (f : E → F ) ∈ Mor(IPG), p ∈ FP (E) :

kE ∋ χp
f∗7−→ χf(p) ∈ kF ,

2 ∀ (f : E → F ) ∈ Mor(MIPG), p ∈ FP (Ē) :
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Main result

Theorem

The directed graphs together with path homomorphisms satisfying
the three covariant conditions form a subcategory in the category
of graphs and path homomorphisms. We call this subcategory
RMIPG. Moreover, the assignments

∀ E ∈ Obj(RMIPG) : E
fL
∗7−→ C∗(E),

∀ (f : E → F ) ∈ Mor(RMIPG), p ∈ FP (Ē) :

C∗(E) ∋ [χp]
fL
∗7−→ [χf̄(p)] ∈ C∗(F ),

define a covariant functor into the category of C*-algebras and
*-homomorphisms.

Finally, restricting the functor to the
subcategory RMBPG (graphs have finitely many vertices and
path homomorphisms are bijective when restricted to the sets of
vertices) gives a functor into the subcategory of unital C*-algebras
and unital *-homomorphisms.
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