Bedlewo, 05.07.2023

THE COVARIANT FUNCTORIALITY OF GRAPH ALGEBRAS

Piotr M. Hajac

Instytut Matematyczny

Polskiej Akademii Nauk

Morphisms of graphs

Definition

A homomorphism $f: E \to F$ of graphs is a pair of maps

$$(f^0: E^0 \to F^0, f^1: E^1 \to F^1)$$

satisfying the conditions:

$$s_F \circ f^1 = f^0 \circ s_E \,, \qquad t_F \circ f^1 = f^0 \circ t_E \,.$$

Morphisms of graphs

Definition

A homomorphism $f \colon E \to F$ of graphs is a pair of maps

$$(f^0: E^0 \to F^0, f^1: E^1 \to F^1)$$

satisfying the conditions:

$$s_F \circ f^1 = f^0 \circ s_E$$
, $t_F \circ f^1 = f^0 \circ t_E$.

Definition

A path homomorphism of graphs is a map $f \colon FP(E) \to FP(F)$ satisfying:

•
$$f(E^0) \subseteq F^0$$
,
• $s_F \circ f = f \circ s_E$, $t_F \circ f = f \circ t_E$,
• $\forall p, q \in FP(E)$ such that $t(p) = s(q)$: $f(pq) = f(p)f(q)$.

Note that a path homomorphism of graphs is a homomorphism of graphs if and only if it preserves the lengths of paths.

Path algebras

Let k be a field. Consider the vector space

 $kE := \{ f \in \operatorname{Map}(FP(E), k) \mid f(p) \neq 0 \text{ for finitely many } p \in FP(E) \},\$

where the addition and scalar multiplication are pointwise. Then the set of functions $\{\chi_p\}_{p\in FP(E)}$ given by

$$\chi_p(q) = \begin{cases} 1 & \text{for } p = q \\ 0 & \text{otherwise} \end{cases}$$

is a linear basis of kE. Next, we will use $\{\chi_p\}_{p\in FP(E)}$ to define a bilinear map:

$$m: kE \times kE \longrightarrow kE, \qquad m(\chi_p, \chi_q) := \begin{cases} \chi_{pq} & \text{if } t(p) = s(q) \\ 0 & \text{otherwise} \end{cases}$$

The bilinear map $m: kE \times kE \rightarrow kE$ defines an algebra structure on kE. We call this algebra the path algebra of E.

.

Extended graphs and Cohn path algebras

Definition

Let $E = (E^0, E^1, s_E, t_E)$ be a graph. The extended graph $\bar{E} := (\bar{E}^0, \bar{E}^1, s_{\bar{E}}, t_{\bar{E}})$ of the graph E is given as follows:

$$\bar{E}^0 := E^0, \quad \bar{E}^1 := E^1 \sqcup (E^1)^*, \quad (E^1)^* := \{e^* \mid e \in E^1\}, \\
\forall e \in E^1 : \quad s_{\bar{E}}(e) := s_E(e), \quad t_{\bar{E}}(e) := t_E(e), \\
\forall e^* \in (E^1)^* : \quad s_{\bar{E}}(e^*) := t_E(e), \quad t_{\bar{E}}(e^*) := s_E(e).$$

Extended graphs and Cohn path algebras

Definition

Let $E = (E^0, E^1, s_E, t_E)$ be a graph. The extended graph $\overline{E} := (\overline{E}^0, \overline{E}^1, s_{\overline{E}}, t_{\overline{E}})$ of the graph E is given as follows:

$$\bar{E}^{0} := E^{0}, \quad \bar{E}^{1} := E^{1} \sqcup (E^{1})^{*}, \quad (E^{1})^{*} := \{e^{*} \mid e \in E^{1}\}, \\
\forall e \in E^{1} : \quad s_{\bar{E}}(e) := s_{E}(e), \quad t_{\bar{E}}(e) := t_{E}(e), \\
\forall e^{*} \in (E^{1})^{*} : \quad s_{\bar{E}}(e^{*}) := t_{E}(e), \quad t_{\bar{E}}(e^{*}) := s_{E}(e).$$

Definition

Let E be a graph and k be a field. The Cohn path algebra $C_k(E)$ of E is the path algebra $k\bar{E}$ of the extended graph \bar{E} divided by the ideal generated by

$$\{\chi_{e^*}\chi_f - \delta_{e,f}\chi_{t(e)} \mid e, f \in E^1\}.$$

Leavitt path algebras and graph C*-algebras

Definition

Let E be a graph and k be a field. The Leavitt path algebra $L_k(E)$ of E is the path algebra $k\bar{E}$ of the extended graph \bar{E} divided by the ideal generated by the union of the following sets:

$$\{ \chi_{e^*} \chi_f - \delta_{e,f} \chi_{t(e)} \mid e, f \in E^1 \},$$

2
$$\{\sum_{e \in s^{-1}(v)} \chi_e \chi_{e^*} - \chi_v \mid v \in \operatorname{reg}(E)\}.$$

Here reg(E) is the set of all regular vertices of E, and a vertex is called regular iff it emits at least one edge and at most finitely many edges.

Leavitt path algebras and graph C*-algebras

Definition

Let E be a graph and k be a field. The Leavitt path algebra $L_k(E)$ of E is the path algebra $k\bar{E}$ of the extended graph \bar{E} divided by the ideal generated by the union of the following sets:

$$\{ \chi_{e^*} \chi_f - \delta_{e,f} \chi_{t(e)} \mid e, f \in E^1 \},$$

2
$$\{\sum_{e \in s^{-1}(v)} \chi_e \chi_{e^*} - \chi_v \mid v \in \operatorname{reg}(E)\}.$$

Here reg(E) is the set of all regular vertices of E, and a vertex is called regular iff it emits at least one edge and at most finitely many edges.

Definition

Let E be a graph and $k = \mathbb{C}$ be a field. Then the formulas

$$\forall v \in E^0 : (\chi_v)^* := \chi_v, \ \forall e \in E^1 : (\chi_e)^* := \chi_{e^*}, \ (\chi_{e^*})^* := \chi_e,$$

define involutions rendering $\mathbb{C}\overline{E}$, $C_{\mathbb{C}}(E)$, and $L_{\mathbb{C}}(E)$ *-algebras. The universal C*-algebra of $L_{\mathbb{C}}(E)$ is called the graph C*-algebra of E, and denoted by $C^*(E)$.

Quantum $\mathbb{C}P^1$

A pullback theorem

Theorem (A. Chirvasitu, P.M.H., M. Tobolski)

Let $F_i \subseteq E_i$, i = 1, 2, be admissible inclusions of graphs such that

- E_1 has no loops, E_2 has no egde loops at vertices in $E_2^0 \setminus F_2^0$, $E_1^0 = E_2^0$ is finite, and $F_1^0 = F_2^0$;
- 2 there is a functor f: E₁ → E₂ such that: it is id on objects, its image is the set of all pointed paths (paths whose last edge is not a loop), and it maps any two different edges to two paths such that none of them is a prolongation of the other.

Then the induced *-homomorphisms exist and render the diagram

a pullback diagram of unital C*-algebras.

A quantum bonus

Quantum weighted complex projective line

Quantum $\mathbb{C}P^2$

Covariant conditions

C1 *IPG* is the category of graphs and path homomorphisms of graphs that are injective when restricted to vertices.

Covariant conditions

- C1 *IPG* is the category of graphs and path homomorphisms of graphs that are injective when restricted to vertices.
- C2 *MIPG* is the subcategory of *IPG* whose morphisms satisfy $f(e) \prec f(e') \Rightarrow e = e'$

when restricted to the sets of edges.

Covariant conditions

- C1 *IPG* is the category of graphs and path homomorphisms of graphs that are injective when restricted to vertices.
- C2 MIPG is the subcategory of IPG whose morphisms satisfy $f(e) \preceq f(e') \quad \Rightarrow \quad e = e'$

when restricted to the sets of edges.

C3 *RMIPG* is the subcategory of *MIPG* whose morphisms satisfy the regularity conditions:

(A) For any $v \in \operatorname{reg}(E)$, the vertex f(v) emits $|s_E^{-1}(v)|$ -many positive-length paths p_1, \ldots, p_{n_v} , $n_v := |s_E^{-1}(v)|$, whose all edges begin at regular vertices. Also, we require that the set $FP_{f(v)} := \{p_1, \ldots, p_{n_v}\}$ is constructed in the following way: we take $x \in s_F^{-1}(f(v))$ and either set it aside as a length-one element of $FP_{f(v)}$, or extend it by all edges emitted from $t_F(x)$. Any thus obtained path of length two, we either set aside as an element of $FP_{f(v)}$, or extend it by all edges emitted from its end. Then we iterate this procedure until we obtain the set $FP_{f(v)}$.

(B) For any $v \in reg(E)$, the map f when restricted to $s_E^{-1}(v)$ is a bijection onto $FP_{f(v)}$.

RMIPG

Let k be a field. The following assignments define covariant functors to the category of k-algebras:

Let k be a field. The following assignments define covariant functors to the category of k-algebras:

$$\forall (f: E \to F) \in \operatorname{Mor}(IPG), p \in FP(E): \\ kE \ni \chi_p \xrightarrow{f_*} \chi_{f(p)} \in kF,$$

②
$$\forall (f: E \to F) \in \operatorname{Mor}(MIPG), p \in FP(\bar{E}):$$

 $C_k(E) \ni [\chi_p] \stackrel{f_*^C}{\longmapsto} [\chi_{\bar{f}(p)}] \in C_k(F),$

Let k be a field. The following assignments define covariant functors to the category of k-algebras:

$$(f: E \to F) \in \operatorname{Mor}(IPG), \ p \in FP(E): \\ kE \ni \chi_p \xrightarrow{f_*} \chi_{f(p)} \in kF,$$

$$(f: E \to F) \in \operatorname{Mor}(MIPG), p \in FP(\bar{E}): \\ C_k(E) \ni [\chi_p] \stackrel{f_*^C}{\longmapsto} [\chi_{\bar{f}(p)}] \in C_k(F),$$

$$\forall (f: E \to F) \in \operatorname{Mor}(RMIPG), p \in FP(\bar{E}): \\ L_k(E) \ni [\chi_p] \stackrel{f_*}{\longmapsto} [\chi_{\bar{f}(p)}] \in L_k(F).$$

Let k be a field. The following assignments define covariant functors to the category of k-algebras:

$$(f: E \to F) \in \operatorname{Mor}(IPG), \ p \in FP(E): \\ kE \ni \chi_p \xrightarrow{f_*} \chi_{f(p)} \in kF,$$

$$(f: E \to F) \in \operatorname{Mor}(MIPG), \ p \in FP(\bar{E}):$$

$$C_k(E) \ni [\chi_p] \stackrel{f_*^C}{\longmapsto} [\chi_{\bar{f}(p)}] \in C_k(F),$$

$$(f: E \to F) \in \operatorname{Mor}(RMIPG), \ p \in FP(\bar{E}):$$

$$L_k(E) \ni [\chi_p] \stackrel{f_*^L}{\longmapsto} [\chi_{\bar{f}(p)}] \in L_k(F).$$

Here $\overline{f} : FP(\overline{E}) \to FP(\overline{F})$ is the obvious extension of $f : FP(E) \to FP(F)$.

Main result

Theorem

The directed graphs together with path homomorphisms satisfying the three covariant conditions form a subcategory in the category of graphs and path homomorphisms. We call this subcategory RMIPG. Moreover, the assignments

> $\forall E \in \operatorname{Obj}(RMIPG) \colon E \xrightarrow{f_*^L} C^*(E),$ $\forall (f \colon E \to F) \in \operatorname{Mor}(RMIPG), \ p \in FP(\bar{E}) \colon$ $C^*(E) \ni [\chi_p] \xrightarrow{f_*^L} [\chi_{\bar{f}(p)}] \in C^*(F),$

define a covariant functor into the category of C-algebras and *-homomorphisms.*

Main result

Theorem

The directed graphs together with path homomorphisms satisfying the three covariant conditions form a subcategory in the category of graphs and path homomorphisms. We call this subcategory RMIPG. Moreover, the assignments

> $\forall E \in \operatorname{Obj}(RMIPG) \colon E \xrightarrow{f_{*}^{L}} C^{*}(E),$ $\forall (f \colon E \to F) \in \operatorname{Mor}(RMIPG), \ p \in FP(\bar{E}) \colon$ $C^{*}(E) \ni [\chi_{p}] \xrightarrow{f_{*}^{L}} [\chi_{\bar{f}(p)}] \in C^{*}(F),$

define a covariant functor into the category of C*-algebras and *-homomorphisms. Finally, restricting the functor to the subcategory RMBPG (graphs have finitely many vertices and path homomorphisms are bijective when restricted to the sets of vertices) gives a functor into the subcategory of unital C*-algebras and unital *-homomorphisms.