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Principal and associated vector bundles

Pull-backs of principal bundles

Assume:
• G compact group,

• X and X′ compact Hausdorff right G-spaces,
• the G-action on X free,
• f : X′ → X is a continuous G-equivariant map.

Then:
• the G-action on X′ is automatically free as well,
• we have then a G-equivariant homeomorphism of compact

principal bundles over X′/G

X′ ∋ x′ 7−→
(
x′G, f (x′)

)
∈ X′/G ×

X/G
X, (1)

• its inverse, given by means of the translation map
τ : X ×

X/G
X → G, τ(x, xg) = g, is as follows

X′/G ×
X/G

X ∋
(
x′G, x

)
7−→ x′τ

(
f (x′), x

)
∈ X′. (2)
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Principal and associated vector bundles

Classification of principal bundles

Theorem

• Any G-equivariant continuous map between total spaces of two
compact principal G-bundles together with their projections onto
their bases related by the induced continuous map form a
pullback diagram.

• As shown by Milnor, the isomorphism class of a compact
principal G-bundle is uniquely determined by the homotopy
class of a map from its base space to some compact
approximation (G ∗ · · · ∗ G)/G of the classifying space BG.

• any compact principal G-bundle is a pullback of a standard one
of the form

G ∗ · · · ∗ G → (G ∗ · · · ∗ G)/G,

which is the Milnor compact approximation of the universal
principal G-bundle EG → BG.
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Principal and associated vector bundles

Associated vector bundles

• To decide whether a given compact principal G-bundle is
nontrivial, it is sufficient to prove that at least one of its
associated vector bundles is nontrivial.

• Every associated vector bundle is a pullback of a universal
vector bundle, both corresponding to the same
representation G → GL(V).

This is a consequence of the compatibility of associating and
pulling back

X′ G
× V =

(
X′/G ×

X/G
X
) G
× V

= X′/G ×
X/G

(
X

G
× V

)
= (f /G)∗

(
X

G
× V

)
,

which is afforded by the G-equivariant homeomorphism

X′ ∋ x′ 7−→
(
x′G, f (x′)

)
∈ X′/G ×

X/G
X.
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Principal and associated vector bundles

Naturality of the Chern character

Let X → Y → S be a family of G-principal bundles of spaces
over S. These bundles correspond to a principal G-action
X × G → X over S with the family of orbit spaces Y = X/G
over S.

Then, we have the following commutative diagram:

K0(BG)

chn(BG)
��

K0(cl)
// K0(Y)

chn(Y |S)
��

H2n
dR(BG)

H2n(cl)
// H2n

dR(Y |S).

where cl : Y → BG is a family of classifying maps
(parameterized by a space S).
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Principal and associated vector bundles

Ad-invariant polynomials on g

• If Ad(G) is a linear algebraic group G regarded as a
G-variety with respect to its adjoint action by conjugations,
its coordinate algebra O(Ad(G)) is a coalgebra with the
comultiplication equivalent to the algebraic group law.

• Its Ad-invariant part O(Ad(G))G (invariants with respect
to the action of G on itself by conjugations, aka class
functions) is related with the Chern–Weil map as follows.

The m-adic filtration of O(Ad(G)), for m := ker(ε), is
G- invariant.
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Principal and associated vector bundles

Therefore

grmO (Ad(G))G =

(⊕
n≥0

mn/mn+1

)G

∼= Sym(m/m2)G =
⊕
n≥0

(Symng∗)G

of Ad-invariant polynomials on the Lie algebra g.

• The latter is the infinitesimal counterpart of O (Ad(G))G

and the domain of the classical Chern–Weil map.
• Replacing the Lie algebra g by the G-space Ad(G) plays a

fundamental role in the construction of G-equivariant
cyclic homology of Block–Getzler.
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Principal and associated vector bundles

Example
For G = SU(2) (when BG = HP∞), the restriction of the
tautological quaternionic line bundle τ

HPn from HPn to
HP1 ∼= S4 is the tautological quaternionic line bundle τ

HP1 over
HP1, so that the Chern character computation proving the
nontriviality of τ

HP1 proves also the nontriviality of τ
HPn , and

hence the nontriviality of all the principal bundles

S4n+3 → S4n+3/SU(2) = HPn.
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Principal and associated vector bundles

Another standard classical example

Theorem (Atiyah–Todd)

The standard filtration by skeleta

CP0 CP1 · · · CPn−1 CPn

induces a tower of standard nilpotent ring extensions in K-theory.

0 K∗(CP0)oooo

∼=
��

K∗(CP1)oooo

∼=
��

· · ·oooo K∗(CPn−1)oooo

∼=
��

K∗(CPn)oooo

∼=
��

0 Zoooo Z[x]/(x2)oooo · · ·oooo Z[x]/(xn)oooo Z[x]/(xn+1).oooo
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Noncommutative principal and associated vector bundles

From the classical to noncommutative

The aim: to generalize this reasoning to the noncommutative
setting.

• Gelfand–Naimark: compact Hausdorff spaces as
commutative unital C*-algebras.

• Peter–Weyl: compact groups as Hopf algebras of
representative functions.

• Baum–Hajac Peter–Weyl: compact principal bundles as
comodule algebras over the Hopf algebra of representative
functions.

• Serre–Swan: vector bundles as finitely generated projective
modules.

• Baum–Hajac–Matthes–Szymański: associated vector
bundles as associated finitely generated projective
modules using the Milnor-Moore cotensor product.
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Noncommutative principal and associated vector bundles

Problems with tenets of NCG

Having all these basic structures given in terms of commutative
algebras, we generalize by dropping the assumption of
commutativity.

Problems:
• Although every classical vector bundle is associated with a

principal bundle, the same question about fgp modules is
elusive.

• The same about local triviality, for the lack of the notion of
locality.

• For some noncommutative algebras it is impossible to
define even a rank of a free module, so triviality of a fgp
module doesn’t make sense.

• Despite succesful noncommutative extension of some
aspects of classical topology, many others do not survive
plain forgetting commutativity.
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Noncommutative principal and associated vector bundles

NC principal and associated vector bundles

Ingredients:
• C a coalgebra coacting principally on an algebra A

• B the coaction-invariant subalgebra
• If A′ is an algebra with a principal coaction of C, and B′ is

its coaction-invariant subalgebra, then any equivariant
(colinear) algebra homomorphism A → A′ induces an
algebra homomorphism B → B′ making B′ a
(B′, B)-bimodule.

• V a finite-dimensional corepresentation of C
Then A□CV is an associated finitely generated projective
module over B.
The module A□CV is the section module of the associated
noncommutative vector bundle.
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Noncommutative principal and associated vector bundles

Association commutes with pullbacks

Theorem (H–M)

• The canonical morphism

B′ ⊗B (A□CV) → A′□CV

of finitely generated left B′-modules is an isomorphism.

• In particular, for any equivariant *-homomorphism f : A → A′

between unital C*-algebras equipped with a free action of a
compact quantum group, the induced K-theory map

f∗ : K0(B) → K0(B′),

where B and B′ are the respective fixed-point subalgebras,satisfies

f∗([A□CV]) = [A′□CV].
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Noncommutative principal and associated vector bundles

The noncommutative Chern-Weil map

This allows us to restrict the functor of K-theory to a similar
functor generated by noncommutative associated vector
bundles.

Next, we construct a factorization of this restriction through a
noncommutative Chern-Weil homomorphism chwn as follows

Corep(C)

χ

��

[A□C(−)]
// K0(B)

chn
��

Ctr chwn // HC2n(B |R)
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Noncommutative principal and associated vector bundles

where

• the map [A□C(−)] associating a finitely generated
projective module with a given corepresentation should be
understood as the map induced by the classifying map on
K-theory,

• the character χ of a corepresentation should be understood
as the Chern character for the classifying space,

• the cyclic-homology Chern–Weil homomorphism chwn
should be understood as the map induced by the
classifying map on cyclic homology.

The diagonal composite in this diagram is the Chern–Galois
character chgn of Hajac–Brzeziński.

À LA RECHERCHE DE L’ESPACE PERDU: DU CÔTÉ DE CHEZ SWAN 17/62



Noncommutative principal and associated vector bundles

where
• the map [A□C(−)] associating a finitely generated

projective module with a given corepresentation should be
understood as the map induced by the classifying map on
K-theory,

• the character χ of a corepresentation should be understood
as the Chern character for the classifying space,

• the cyclic-homology Chern–Weil homomorphism chwn
should be understood as the map induced by the
classifying map on cyclic homology.

The diagonal composite in this diagram is the Chern–Galois
character chgn of Hajac–Brzeziński.
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Noncommutative principal and associated vector bundles

• Just as to express K-theory in terms of matrix idempotents
one introduces the functor of forming an H-unital algebra
of locally finite matrices M∞(−), to embrace the
symmetry of a principal bundle in terms of representations
of the symmetry, we introduce another H-unital algebra M
which is the Ehresmann–Schauenburg quantum groupoid
with a non-standard multiplication.

• we introduce an abstract cyclic-homology Chern character
unifying both construction
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Noncommutative principal and associated vector bundles

which can be subsumed in the following commutative diagram:

Corep(C)

c̃hgn

��

chgn

%%

[A□C(−)]
// K0(B)

c̃hn

��

chn

xx

HC2n(M |R)
HC2n(εM)

∼=
// HC2n(B |R) HC2n(M∞(B) |R).∼=

[tr2n]
oo

(3)

Here the bottom horizontal arrows are isomorphisms of
H-unital models of cyclic homology of B, and the vertical
arrows are tautological constructions. Thus the left-hand-side
factorization of the Chern–Galois character becomes
analogous to the well-known right-hand-side factorization of
the Chern character.
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What is noncommutative topology?

KK-theory

The present state of the art of Noncommutative Topology:
bivariant Kasparov’s KK-theory.

1 It is a triangulated category.
2 Objects are separable C*-algebras.
3 Z/2Z-graded K-theory groups of C*-algebras is a functor

on KK.
Therefore it is an analog of

• the category of motives in Algebraic Geometry,
• the category of suspension spectra in Stable Homotopy

Theory.
It restricts as a bivariant theory to metrizable locally compact
Hausdorff spaces:

KK(X, Y) := KK(C0(Y), C0(X)).
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Why KK-theory is not enough?

KK-equivalence of different homotopy types

Similarly as stable homotopy equivalences, KK-equivalences
do not recognize the plain homotopy type.

Theorem (consequence of the Rosenberg–Schochet thm)

Any two metrizable compact Hausdorff spaces with (abstractly)
isomorphic K-groups are KK-equivalent.

Example

K•(CPn) ∼= K•(Pn+1).

Note: CPn connected, Pn+1 disconnected, but their K-groups
isomorphic.
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What from classical topology is missing here?

Multiplicative K-equivalences

Definition
A map of compact Hausdorff spaces is called K-equivalence if
it induces an isomorphism of Z/2Z-graded K-groups.

But then any K-equivalence automatically induces an
isomorphism of Z/2Z-graded K-rings.

Therefore, a K-equivalence of (metrizable compact Hausdorff)
spaces can be promoted to a multiplicative K-equivalence.
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What from classical topology is missing here?

Cup products and the diagonal map

There is a general strategy to provide multiplicative invariants
which is based on the notion of the diagonal map.

• On the way of constructing category of motives in
Algebraic Geometry all the cohomology theories of interest
are equipped with a cycle class map which sends
intersection products to cup products.

• Under the diagonal map and the constant map into a one
point space, every space is a comonoid in the monoidal
category of spaces, the category of spectra is monoidal and
the suspension spectrum functor from spaces to spectra is
strong monoidal what makes a suspension spectrum a
comonoid as well.

À LA RECHERCHE DE L’ESPACE PERDU: DU CÔTÉ DE CHEZ SWAN 23/62



What from classical topology is missing here?

Cup products and the diagonal map

There is a general strategy to provide multiplicative invariants
which is based on the notion of the diagonal map.

• On the way of constructing category of motives in
Algebraic Geometry all the cohomology theories of interest
are equipped with a cycle class map which sends
intersection products to cup products.

• Under the diagonal map and the constant map into a one
point space, every space is a comonoid in the monoidal
category of spaces, the category of spectra is monoidal and
the suspension spectrum functor from spaces to spectra is
strong monoidal what makes a suspension spectrum a
comonoid as well.

À LA RECHERCHE DE L’ESPACE PERDU: DU CÔTÉ DE CHEZ SWAN 23/62



What from classical topology is missing here?

Cup products and the diagonal map

There is a general strategy to provide multiplicative invariants
which is based on the notion of the diagonal map.

• On the way of constructing category of motives in
Algebraic Geometry all the cohomology theories of interest
are equipped with a cycle class map which sends
intersection products to cup products.

• Under the diagonal map and the constant map into a one
point space, every space is a comonoid in the monoidal
category of spaces, the category of spectra is monoidal and
the suspension spectrum functor from spaces to spectra is
strong monoidal what makes a suspension spectrum a
comonoid as well.

À LA RECHERCHE DE L’ESPACE PERDU: DU CÔTÉ DE CHEZ SWAN 23/62



What from classical topology is missing here?

Cup products and the diagonal map

There is a general strategy to provide multiplicative invariants
which is based on the notion of the diagonal map.

• On the way of constructing category of motives in
Algebraic Geometry all the cohomology theories of interest
are equipped with a cycle class map which sends
intersection products to cup products.

• Under the diagonal map and the constant map into a one
point space, every space is a comonoid in the monoidal
category of spaces, the category of spectra is monoidal and
the suspension spectrum functor from spaces to spectra is
strong monoidal what makes a suspension spectrum a
comonoid as well.

À LA RECHERCHE DE L’ESPACE PERDU: DU CÔTÉ DE CHEZ SWAN 23/62



What from classical topology is missing here?

Cup product helps

Example
K•(CPn) and K•(Pn+1) are isomorphic as Z/2Z-graded
K-groups but not as Z/2Z-graded K-rings:

K•(CPn) ∼= Z[x]/(xn+1) for x even,

K•(Pn+1) ∼= Z×(n+1).

Cup products are helpful not in distinguishing homotopy types
only.

Example
For n > 1, the cup product in K-theory can be used to show
that there is no a retraction of CPn onto its complex projective
hyperplane CPn−1.
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Multiplicative K-theory of C*-algebras

Mapping K-groups ⇏ mapping K-rings

Cup products are more sensitive but also more fragile than the
plain abelian group structure.

Example
In general, correspondences of the category of motives do not
preserve the cup products, sometimes in an interesting way.
For example, some stratified Mukai flops do not, and the
correction terms express through Gromov–Witten invariants
[B. Fu–C.-L. Wang ‘08].

Example
Since K-theory is an (extraordinary) cohomology theory, the
Mayer–Vietoris principle applies, but not all maps in the
corresponding long (six term, in fact) exact sequence respect
the cup product.
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Multiplicative K-theory of C*-algebras

Augmented rings instead of rings

The last example suggests the following replacement of the
Z/2Z-graded ring structure of the K-theory.

Definition
A Z/2Z-graded augmented ring is a triple (R•, M•, 1M) where

• R• is a Z/2Z-graded unital ring,
• M• is a Z/2Z-graded R•-module,
• 1M ∈ M0.

A morphism (S•, N•, 1N) → (R•, M•, 1M) of Z/2Z-graded
augmented rings consists of

• a unital Z/2Z-graded ring map S• → R•,
• a unitary Z/2Z-graded S•-module map N• → M•,
• 1N 7→ 1M.
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Multiplicative K-theory of C*-algebras

Rings are coreflective in augmented rings

Theorem (easy)

The functor

RingZ/2Z −→ AugRingZ/2Z, R• p⇝ (R•, R•, 1R)

is a full embedding, admitting a right adjoint (a coreflector)

AugRingZ/2Z −→ RingZ/2Z, (R•, M•, 1M) p⇝ R•.

Recall that compact spaces are coreflective in compact quantum
spaces (the coreflector is the space of classical points).
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Multiplicative K-theory of C*-algebras

Augmented rings vs abelian groups

We will need another functor.

Definition

AugRingZ/2Z −→ AbZ/2Z, (R•, M•, 1M) p⇝M•.

It is related to the previous full embedding and forgetting the
unital ring structure as follows

RingZ/2Z

AbZ/2Z

AugRingZ/2Z
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Multiplicative K-theory of C*-algebras

Multiplicative K-theory of spaces

Theorem (a truism)

The association

X p⇝ (R•, M•, 1M) := (K•(X), K•(X), [1X])

extends by functoriality of the K-ring uniquely to a contravariant
functor from spaces to augmented rings.

Note that this is entirely equivalent to the K-ring functor, so ...

why anyone might care?
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Multiplicative K-theory of C*-algebras

The justification of the new approach

Theorem (D’A–M)

There exists a full embedding Q of cw-Waldhausen categories

and a functor K such that
• the following diagram

CpctHaus RingZ/2Z

k-CpctQuant AugRingZ/2Z

K

Q

K

commutes,
• the cofibrations of both Waldhausen structures are

monomorphisms and weak equivalences are K-equivalences,
• the composition of K with AugRingZ/2Z → AbZ/2Z factors

through K-theory of unital C*-algebras.
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Multiplicative K-theory of C*-algebras

cw-Waldhausen categories

Definition
An unpointed Waldhausen category C is a category with

• an initial object ∅ and a terminal object ⋆,
• with distinguished two classes of maps,

(Cof ) of cofibrations, depicted as ,
(Weq) of weak equivalences, depicted as ∼ ,

such that
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Multiplicative K-theory of C*-algebras

Cofibrations

(Cof 1) all isomorphisms and compositions of cofibrations are
cofibrations,

(Cof 2) for any object X the unique morphism ∅ X is a
cofibration,

(Cof 3) if X Y is a cofibration and X X̃ any morphism, then
the pushout X̃ X̃ ⊔X Y is a cofibration,
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Multiplicative K-theory of C*-algebras

Weak equivalences

(Weq 1) all isomorphisms are weak equivalences,

(Weq 2) weak equivalences are closed under composition,
(Weq 3) “glueing for weak equivalences”: Given any commutative

diagram of the form

Z X Y

Z̃ X̃ Ỹ,

∽ ∽ ∽

the induced map Z ⊔X Y Z̃ ⊔X̃ Ỹis a weak equivalence.
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Multiplicative K-theory of C*-algebras

Cofibration weakening

Definition (A–H–M–S–Z)

We call an unpointed Waldhausen category cw-Waldhausen
(cofibration-weakening-Waldhausen category) iff for every
pushout diagram

˜̃Z
Ỹ Z̃

Y

j̃

g j

h̃

with j being a cofibration, h̃ is a weak equivalence if and only
if so is g.
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Multiplicative K-theory of C*-algebras

Weak cofibrations

Theorem (A–H–M–S–Z)

Any cw-Waldhausen category admits a calculus of left fractions of
the form Weq−1 ◦ Cof in the homotopy category
Ho(C ) := C [Weq−1].

We call such fractions weak cofibrations, can represent by
cospans

Ỹ

X Y,

∼

depict as X↣ Y, and compose in Ho(C ) as follows
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Multiplicative K-theory of C*-algebras

Composition of weak cofibrations

Z̃ Ỹ

Y Z

◦
X Y

=

˜̃Z
X Z

j h∼ i g
∼

j̃ ◦ i h̃ ◦ h∼

where j̃ and h̃ are the arrows completing the pushout square in
the diagram below

˜̃Z
Ỹ Z̃

X Y Z.

j̃ h̃∼

i g
∼

j h∼
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Multiplicative K-theory of C*-algebras

Compact quantum spaces

Theorem (A–H–M–S–Z)

CpctQuant, the opposite of the category of unital C*-algebras, with

• unital *-homomorphisms as opposite morphisms,
• zero C*-algebra as an initial object, complex numbers as a

terminal object,
• surjective unital *-homomorphisms as cofibrations, and
• unital *-homomorphisms inducing an isomorphism on

K-theory as weak equivalences,
is a cw-Waldhausen category.
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Multiplicative K-theory of C*-algebras

Compact Hausdorff spaces

Theorem (A-H-M-S-Z)

CpctHaus, the category of compact Hausdorff spaces with
• continuous maps as morphisms,

• an empty set as an initial object,a singleton as a terminal
object,

• embeddings as cofibrations, and
• continuous maps inducing an isomorphism on K-theory as

weak equivalences,
is a reflexive full cw-Waldhausen subcategory in CpctQuant.

Essentially, it is an enhancement of the Gelfand–Naimark
duality.
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Multiplicative K-theory of C*-algebras

k-topology

Definition (A–M)

A k-covering family of a compact quantum space X is a
compact quantum principal bundle (G, E → X) with a
compact quantum structural group G.

Definition (A–M)

A k-topology on X is a collection of k-covering families.
When equipped with a k-topology X will be called k-compact
quantum space.
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Multiplicative K-theory of C*-algebras

k-continuous maps

Definition (A–M)

We call a morphism of compact quantum spaces X′ → X
equipped with k-topology k-continuous map if for any
compact quantum principal bundle (G, E → X) belonging to
the k-topology on X,

there exists a compact quantum
principal bundle (G′, E′ → X′) belonging to the k-topology on
X′, a morphism of compact quantum groups G′ → G, and a
morphism of compact quantum G′-spaces E′ → E making a
corresponding Peter-Weyl diagram

A′ A

B′ B

α

β

commute and satisfying the condition that
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Multiplicative K-theory of C*-algebras

Definition (continued)

the canonical map

B′ ⊗B A → A′□H′
H, b′ ⊗B a 7→ b′α(a(0))⊗ a(1)

is bijective.

Definition (A–M)

Forgetting k-topology defines a functor from the category
k-CpctQuant of k-topological compact quantum spaces with
k-continuous morphisms to CpctQuant.
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Multiplicative K-theory of C*-algebras

L’espace retrouvé

Remark. Classically
• any G-equivariant continuous map of G-principal bundles

over the same base is an isomorphism,
• any continuous map between bases pulls back principal

bundles and lifts to an equivariant map of principal
bundles,

• every continuous map is k-continuous with respect to
k-topology consisting of all classical compact principal
bundles.
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Multiplicative K-theory of C*-algebras

Why k-topology is a kind of topology

There is a weakened, but sufficient for speaking about sheaves,
version of (unsaturated) Grothendieck topology, introduced by
Peter Johnstone as coverage.

Theorem
Families of compact quantum principal bundles together with
k-continuous maps form a coverage in the sense of Johnstone.
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Multiplicative K-theory of C*-algebras

From k-topology to multiplicative K-theory

Associated vector bundles as section bimodules act on vector
bundles as module sections over X and over its unreduced
suspension ΣX.This leads to a Z/2Z-graded R(G)-module
structure on M•(X) := K•(X).

In particular, since K0(X) contains a class 1M(X) := [1X] of a
rank one trivial vector bundle 1X we can define, using Bott
periodicity, NC join construction and reduced K-theory the
desired functor.

Definition (A–M)

k-CpctQuant −→ AugModZ/2Z,

X p⇝ (R•(X), M•(X), 1M(X)),

R0(X) := lim
(G, E→X)

R(G)/Ann(1K(X)), R1(X) := R0(ΣX).
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Quantum CW-complexes

Quantum spheres and balls

Definition (A–H–M–S–Z)

By boundary map from a K-sphere to a K-ball we mean a
cofibration ∂ : Sd−1 Bd in the cw-Waldhausen category
CpctQuant inducing short exact sequences

0 // K0(Bd)

∼=

// K0(Sd−1)

∼=

// 0 // 0,

Z Z

0 // K1(Bd)

=

// K1(Sd−1)

∼=
// Z // 0,

0 Z

for d even, and
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Quantum CW-complexes

Definition (continued)

0 // K0(Bd)

∼=

// K0(Sd−1)

∼=

// Z // 0,

Z Z ⊕ Z

0 // K1(Bd)

=

// K1(Sd−1)

=

// 0 // 0,

0 0

for d odd,

as classical boundary maps from spheres to balls
do.
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Quantum CW-complexes

Definition (continued)
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Quantum CW-complexes

K-weak quantum CW-complexes

Definition (A–H–M–S–Z)

A finite quantum K-weak CW-complex is an object X of the
category Ho(CpctQuant)

admitting a finite sequence of weak
cofibrations

Xd0 Xd1 · · · Xdn−1 Xdn = X

of the form
X̃dk

Xdk−1 Xdk .

∼
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Quantum CW-complexes

Definition (continued)

Here Xd0 is finite, and the above sequence (referred to as weak
filtration by skeleta) is compatible with pushouts in CpctQuant
(called attaching cells)

X̃dk

Xdk−1 ⨿ik
i=1 B

dk
i

⨿ik
i=1 S

dk−1
i .

ak ∂
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Quantum CW-complexes

Strict quantum CW-complexes

Definition (A–H–M–S–Z)

If in all presentations of the weak cofibrations the
K-equivalences are identities, then we suppress the adjective
“K-weak” and regard the resulting objects as objects of
CpctQuant.

Example
The Vaksman–Soibelman quantum odd spheres and their
quotient quantum complex projective spaces are strict quantum
CW-complexes.

Example
The multipullback odd spheres and their quotient quantum
complex projective spaces are K-weak quantum
CW-complexes.
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Quantum CW-complexes

A quantum k-topological strict version

Theorem (A–M)

The Vaksman–Soibelman quotient quantum complex projective
spaces are strict quantum k-CW-complexes with k-topology given
by the compact U(1)-principal bundle being the
Vaksman-Soibelman sphere and admits a strict k-topological
filtration by skeleta

CP0
q CP1

q · · · CPn−1
q CPn

q

inducing a tower of standard nilpotent ring extensions in
multiplicative K-theory with M•(CPn

q )
∼= R•(CPn

q )

0 R•(CP0
q)oooo

∼=
��

R•(CP1
q)oooo

∼=
��

· · ·oooo R•(CPn−1
q )oooo

∼=
��

R•(CPn
q )oooo

∼=
��

0 Zoooo Z[x]/(x2)oooo · · ·oooo Z[x]/(xn)oooo Z[x]/(xn+1).oooo
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Quantum CW-complexes

A quantum k-topological K-weak version

Theorem (A–M)

The Heegaard quotient quantum complex projective spaces are
K-weak quantum k-CW-complexes with k-topology given by the
compact U(1)-principal bundle being the Heegaard quantum sphere
and admits a K-weak k-topological filtration by skeleta

CP0
T CP1

T · · · CPn−1
T CPn

T

inducing a tower of standard nilpotent ring extensions in
multiplicative K-theory with M•(CPn

T )
∼= R•(CPn

T )

0 R•(CP0
T )oooo

∼=
��

R•(CP1
T )oooo

∼=
��

· · ·oooo R•(CPn−1
T )oooo

∼=
��

R•(CPn
T )oooo

∼=
��

0 Zoooo Z[x]/(x2)oooo · · ·oooo Z[x]/(xn)oooo Z[x]/(xn+1).oooo
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Quantum CW-complexes

A multiplicative K-equivalence

Theorem (A–M)

There is a multiplicative K-equivalence from the weak hyperplane
filtration of CPn

T to the strict hyperplane filtration of CPn
q .

Remark. Although these two quantizations of CPn are not
isomorphic, they define the same multiplicative K-theory type
which should be understood as a quantization of the classical
K-theory type of CPn.
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The language of proofs

A higher-categorical perspective

The 2-category G

• 0-cells X are Grothendieck categories.
• 1-cells f : X′ → X are adjunctions f = (f ∗ ⊣ f∗), where

f∗ : X′ → X is an additive functor.
• 2-cells f =⇒ g are natural transformations f∗ =⇒ g∗.
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Weakly Cartesian squares

Let S be a sub-2-category of G.
• A weakly commutative square in S is a diagram in S:

U′ U

X′ X
f

q′ q

f̃

(4)

such that there is an invertible 2-cell qf̃ =⇒ fq′. The latter
means that there is a natural isomorphism of functors
q∗ f̃∗ =⇒ f∗q′∗.

• A weakly commutative square in S is weakly Cartesian if
the Beck-Chevalley condition is satisfied, i.e. the natural
transformation of functors q∗f∗ =⇒ f̃∗q′∗ is an
isomorphism.
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Weakly Cartesian coverage

A weakly Cartesian coverage of S
• is a function T assigning to every Grothendieck category X

in S a collection T(X) of families of adjunctions{
qi : Ui → X

∣∣ i ∈ I
}

(called T-covering families)
• such that, for every weakly Cartesian square as above if

q : U → X is a member of a T-covering family over X, then
q′ : U′ → X′ is a member of a T-covering family over X′.
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Classical case

By a family of group actions we mean a pair (G, U → X) of a
group G and a G-equivariant map U → X from a G-space U to
a space X with trivial G-action. Let us consider the category
whose objects are families of group actions and whose
morphisms

(G′, U′ → X′) −→ (G, U → X) (5)

are pairs consisting of a morphism γ : G′ → G of groups and a
commutative diagram

U′ U

X′ X
f

q′ q

f̃

(6)

where f̃ is G′-equivariant.
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Then the map

U′ ×G′
G −→ X′ ×X U , [(u′, g)] 7→

(
q′(u′), f̃ (u′)g

)
,

is well-defined and it is a morphism in the category of right
G-spaces equipped with a continuous map to X′ and a
G-equivariant continuous map to U.
A morphism of families of group actions is called Cartesian if
the above map is an isomorphism.

Several important notions of equivariant topology can be
rewritten in terms of Cartesian morphisms of families of group
actions.
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The language of proofs

Example 1. Orbit spaces

G {e}

U {∗}

X {∗}

=q

Then, the map

U ×G {∗} −→ X ×{∗} {∗} , [(u, e)] 7→
(
q(u), ∗

)
reads as

U/G −→ X , [u] 7→ q(u) ,

which means that it is an isomorphism if and only if q is a
quotient map onto the space of orbits.
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Example 2. Slices

G G

U G

X {∗}

=

s

q

Then, the map

U ×G G −→ X ×{∗} G , [(u, g)] 7→
(
q(u), s(u)g

)
reads as

U −→ X × G , [u] 7→
(
q(u), s(u)

)
,

which means that it is an isomorphism if and only if s is a slice
map, where the slice is the pre-image s−1(e) ⊂ U, q is a quotient
map onto the space of orbits and admits a section whose the
image is the slice.
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Example 3. Principal bundles

G G

U × G U

U X
q

qq̃

α

=

Here q̃ is the projection onto the first Cartesian factor and
α(u, g) := ug the group action. The right G-action on U × G is
on the second factor. Then, our map

(U × G)×G G −→ U ×X U , [((u, g1), g2)] 7→
(
u, ug1g2

)
reads as the graph of the G-action

U × G −→ U ×X U , (u, g) 7→ (u, ug),

which is an isomorphism if and only if q : U → X is a principal
G-bundle.
Let us note that in this context a slice like in Example 2 is
tantamount to a trivialization of the principal bundle.
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Example 4. Change of the structure group

G′ G

U′ U

X X=

qq′

f̃

For two principal bundles over the same base, the map

U′ ×G′
G −→ X ×X U , [(u′, g)] 7→

(
q′(u′), f̃ (u′)g

)
reads as

U′ ×G′
G −→ U , [(u′, g)] 7→ f̃ (u′)g,

which is an isomorphism if and only if f̃ is a change of structure
group.
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Example 5. Locally trivial principal bundles

Every morphism between locally trivial principal bundles is
Cartesian. Indeed, notice that the triangle

X′ ×X U

X′

U′ ×G′
G

is a morphism of principal locally trivial G-bundles over the
same base space X′, and hence it must be an isomorphism.
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