Sums of Squares in Leavitt Path *-Algebras and beyond

Matthias Schötz, IMPAN

07.07.2023

Overview

- Definition of ordered *-algebras and the grand unified problem
- The uniform norm and the Archimedean Positivstellensatz
- Closed ordered *-algebras and the generalized Gelfand-Naimark Theorem

Ordered *-Algebras

Definition

A *-algebra is a unital associative algebra $\mathcal A$ over the field of complex numbers $\mathbb C$ endowed with an antilinear involution $\cdot^* \colon \mathcal A \to \mathcal A$ that fulfils $(ab)^* = b^*a^*$ for all $a,b \in \mathcal A$.

$$A_{\rm h} \coloneqq \{ a \in A \mid a = a^* \}$$

is the real linear subspace of hermitian elements of \mathcal{A} .

Ordered *-Algebras

Definition

ullet A quadratic module on a *-algebra ${\mathcal A}$ is a subset ${\mathcal Q}\subseteq {\mathcal A}_{
m h}$ fulfilling

$$q+r\in\mathcal{Q}$$
, $a^*qa\in\mathcal{Q}$ and $\mathbb{1}\in\mathcal{Q}$

for all $q, r \in \mathcal{Q}$, $a \in \mathcal{A}$. The support *-ideal of \mathcal{Q} is

$$\mathsf{supp}\,\mathcal{Q} \coloneqq \big(\mathcal{Q} \cap (-\mathcal{Q})\big) \otimes_{\mathbb{R}} \mathbb{C} = \big(\mathcal{Q} \cap (-\mathcal{Q})\big) + \mathrm{i}\big(\mathcal{Q} \cap (-\mathcal{Q})\big)$$

• An ordered *-algebra is a *-algebra $\mathcal A$ with a partial order \leq (reflexive, transitive, and antisymmetric relation) on $\mathcal A_h$ such that

$$b+d \le c+d$$
, $a^*b \ a \le a^*c \ a$ and $0 \le 1$

hold for all $a \in \mathcal{A}$ and $b, c, d \in \mathcal{A}_h$ with $b \leq c$. Then the positive hermitian elements

$$\mathcal{A}_{\mathrm{h}}^{+} \coloneqq \{ a \in \mathcal{A}_{\mathrm{h}} \mid 0 \leq a \}$$

are a quadratic module and supp $\mathcal{A}_{\mathrm{h}}^{+}=\{0\}.$

• Conversely, $\mathcal{A}/\text{supp }Q$ with $[a] \leq [b] \iff b-a \in \mathcal{Q}$ is ordered *-algebra.

Example: C^* -algebras

Proposition (unique order on C^* -algebras)

Let $\mathcal A$ be a C^* -algebra, then there is a unique partial order \leq on $\mathcal A_h$ that turns $\mathcal A$ into an ordered *-algebra. This order is determined by

$$\mathcal{A}_{\mathrm{h}}^{+} := \left\{ \left. a \in \mathcal{A}_{\mathrm{h}} \; \middle| \; \mathsf{spec}(a) \subseteq [0, \infty[\; \right\} = \left\{ \left. a^{*} a \; \middle| \; a \in \mathcal{A} \; \right\} = \left\{ \left. a^{2} \; \middle| \; a \in \mathcal{A}_{\mathrm{h}} \; \right\}. \right. \right. (*)$$

Proof

 $\mathcal Q$ is q.m. means: $q+r\in\mathcal Q$, $a^*q\,a\in\mathcal Q$ for all $q,r\in\mathcal Q$, $a\in\mathcal A$, and $\mathbb 1\in\mathcal Q$.

- ullet (*) defines quadratic module $\mathcal{A}_{\mathrm{h}}^{+}$ and supp $\mathcal{A}_{\mathrm{h}}^{+}=\{0\}$: standard.
- If $\mathcal{Q} \subseteq \mathcal{A}_h$ is a quadratic module and supp $\mathcal{Q} = \{0\}$, then $\mathcal{Q} = \mathcal{A}_h^+$:
- "\(\sum_{\text{"}}\)": Given $a \in \mathcal{A}_{h}^{+}$, then $a = \sqrt{a} \, \mathbb{1} \sqrt{a} \in \mathcal{Q}$.

" \subseteq ": Given $a \in \mathcal{Q}$, then $a = a_+ - a_-$ with $a_+, a_- \in \mathcal{A}_h^+$, $a_+ a_- = a_- a_+ = 0$. From $-(a_-)^3 = a_- a_- = \mathcal{Q}$ and $(a_-)^3 \in \mathcal{A}_h^+ \subseteq \mathcal{Q}$ it follows that $(a_-)^3 = 0$, therefore $a_- = 0$ and $a = a_+ \in \mathcal{A}_h^+$.

Corollary

Every C^* -norm on a *-algebra $\mathcal A$ turns $\mathcal A$ into an ordered *-algebra.

Constructing quadratic modules – order from *-representations

Ordered *-algebras of functions

X a set, \mathbb{C}^X the *-algebra of complex-valued functions on X with pointwise operations and pointwise order.

Then $(\mathbb{C}^X)_h$ are the \mathbb{R} -valued functions, $(\mathbb{C}^X)_h^+$ the $[0,\infty[$ -valued functions.

Ordered *-algebras of operators (O*-algebras)

 $\mathcal D$ a pre-Hilbert space with inner product $\langle \, \cdot \, | \, \cdot \, \rangle \colon \mathcal D \times \mathcal D \to \mathbb C$, $\mathcal L^*(\mathcal D)$ the *-algebra of *adjointable endomorphisms* of $\mathcal D$, i.e. of linear maps $a\colon \mathcal D \to \mathcal D$ such that there exists linear $a^*\colon \mathcal D \to \mathcal D$ fulfilling

$$\langle \phi \, | \, a(\psi) \rangle = \langle a^*(\phi) \, | \, \psi \rangle$$
 for all $\phi, \psi \in \mathcal{D}$.

Then

$$\mathcal{L}^*(\mathcal{D})_h = \left\{ a \in \mathcal{L}^*(\mathcal{D}) \mid \langle \psi \mid a(\psi) \rangle \in \mathbb{R} \text{ for all } \psi \in \mathcal{D} \right\}$$

and $\mathcal{L}^*(\mathcal{D})$ becomes an ordered *-algebra with the operator order on $\mathcal{L}^*(\mathcal{D})_h$,

$$\mathcal{L}^*(\mathcal{D})_{\mathrm{h}}^+ = \big\{ \ a \in \mathcal{L}^*(\mathcal{D}) \ \big| \ \langle \psi \, | \, a(\psi) \rangle \in [0, \infty[\text{ for all } \psi \in \mathcal{D} \, \big\}.$$

Constructing quadratic modules - order from generators

Definition

Let \mathcal{A} be a *-algebra, then

$$\mathcal{A}_{\mathrm{h}}^{++} \coloneqq \left\{ \left. \sum_{n=1}^{N} a_n^* a_n \, \right| \, N \in \mathbb{N}_0; \, a_1, \ldots, a_N \in \mathcal{A} \, \right\}$$

are the sums of hermitian squares.

 \mathcal{A}_{h}^{++} is the smallest quadratic module of a *-algebra $\mathcal{A}.$

Definition

Let \mathcal{A} be a *-algebra and $G \subseteq \mathcal{A}_h$, then

$$\langle\!\langle \, \textit{G} \, \rangle\!\rangle \coloneqq \Big\{ \sum\nolimits_{n=1}^{\textit{N}} \textit{a}_{n}^{*} \textit{g}_{n} \textit{a}_{n} \; \Big| \; \textit{N} \in \mathbb{N}_{0}; \; \textit{a}_{1}, \ldots, \textit{a}_{\textit{N}} \in \mathcal{A}; \; \textit{g}_{1}, \ldots, \textit{g}_{\textit{N}} \in \textit{G} \cup \{\mathbb{1}\} \; \Big\}$$

is the quadratic module generated by G.

Note: If $+g, -g \in S$, then $g \in \text{supp}(\langle G \rangle)$.

Examples (commutative)

Polynomials

- $\mathbb{C}[x_1,\ldots,x_n]$ *-algebra of polynomials in hermitian variables x_1,\ldots,x_n .
- Consider $G \subseteq \mathbb{C}[x_1, \dots, x_n]_h = \mathbb{R}[x_1, \dots, x_n]$.
- Set $\mathcal{P}(G) := \{ \xi \in \mathbb{R}^n \mid g(\xi) \ge 0 \text{ for all } g \in G \}.$
- How is $\langle\langle G \rangle\rangle$ related to polynomials pointwise positive on $\mathcal{P}(G)$?

Polynomials on \mathbb{CP}^n via symmetry reduction

- $\mathbb{C}[z_0,\ldots,z_n,\overline{z}_0,\ldots,\overline{z}_n]$ *-algebra of polynomials and $z_i^* := \overline{z}_i$.
- $\mathbb{C}[z_0,\ldots,z_n,\overline{z}_0,\ldots,\overline{z}_n]^{U(1)}$ *-subalgebra of U(1)-invariant functions.
- Momentum map $\mathcal{J} := z_0 \overline{z}_0 + \cdots + z_n \overline{z}_n \in \mathbb{C}[z_1, \dots, z_n, \overline{z}_1, \dots, \overline{z}_n]^{U(1)}$, and $\mathcal{J}^{-1}(\{\mu\}) \cong \mathbb{S}^{2n+1}$ for $\mu > 0$.
- How is $\langle \{ \mathcal{J} \mu, \mu \mathcal{J} \} \rangle$ related to U(1)-invariant polynomials pointwise positive on $\mathcal{J}^{-1}(\{\mu\})$, $\mu > 0$?

Example (non-commutative)

Berezin quantization of \mathbb{CP}^n , but via symmetry reduction

- Weyl *-algebra $\mathcal{W}(n) := \langle a_0, \dots, a_n \mid a_i a_j = a_j a_i, a_i a_j^* a_j^* a_i = \delta_{ij} \hbar \rangle, \\ \hbar > 0.$
- $W(n)^{U(1)}$ the U(1)-invariant elements (#creators = #annihilators).
- Momentum map $\mathcal{J} := a_0 a_0^* + \cdots + a_n a_n^* \in \mathcal{W}(n)^{U(1)}$.
- How is $\langle \langle \{\mathcal{J} \mu, \mu \mathcal{J} \} \rangle \rangle$, $\mu \geq 0$, related to U(1)-invariant elements positive in representations $\pi_{\mu} \colon \mathcal{W}(n)^{U(1)} \to \mathcal{L}^*(\mathcal{D}_{\mu})$ of the Berezin quantization of \mathbb{CP}^n ?
 - $\mu = \hbar k$, $k \in \mathbb{N}_0$: \mathcal{D}_{μ} are holomorphic sections of a complex line bundle over \mathbb{CP}^n .
 - Otherwise: $\mathcal{D}_{\mu} = \{0\}.$

Leavitt path algebras

- Consider a directed graph $G := (E_0, E_1, r: E_1 \rightarrow E_0, s: E_1 \rightarrow E_0)$, E_0 finite.
- Let \mathcal{A} be the *-algebra freely generated by: hermitian elements $\{p_v \mid v \in E_0\}$ and arbitrary elements $\{s_e \mid e \in E_1\}$.
- \bullet Let $\mathcal Q$ be the quadratic module implementing the Cuntz–Krieger relations, namely

$$\left\langle \left\langle \left\{ \left. \pm (p_v p_w - \delta_{v,w} p_v) \right. \right| v, w \in E_0 \right. \right\} \cup \left\{ \left. \pm (s_e^* s_f - \delta_{e,f} p_{r(e)}) \right. \right| \left. e, f \in E_1 \right. \right\} \right\rangle \\ \left\langle \left\langle \left\{ \left. \pm (p_v - \sum_{s(e) = v} s_e s_e^*) \right. \right| v \in E_0 \text{ regular} \right. \right\} \cup \left\{ \left. p_{s(e)} - s_e s_e^* \right. \right| \left. e \in E_1 \right. \right\} \right\rangle \right\rangle$$

- There is a canonical map $\Phi \colon \mathcal{A} \to C^*(G)$ in the corresponding graph C^* -algebra $C^*(G)$.
- How is \mathcal{Q} related to $\Phi^{-1}(C^*(G)_h^+)$?

The grand unified problem

Definition

- A positive *-representation of an ordered *-algebra $\mathcal A$ is a unital *-homomorphism $\pi\colon \mathcal A\to \mathcal L^*(\mathcal D)$ to the *-algebra of adjointable endomorphisms on a pre-Hilbert space $\mathcal D$ such that $\langle\phi\,|\,\pi(a)(\phi)\rangle\geq 0$ for all $a\in\mathcal A_{\rm h}^+,\,\phi\in\mathcal D.$
- Such a positive *-representation is called *bounded* if \mathcal{D} is complete, i.e. $\mathcal{D} = \mathfrak{H}$ a Hilbert space (cf. Hellinger–Toeplitz theorem).

The Problem

Let $\mathcal A$ be an ordered *-algebra (typically $\mathcal A_{\mathrm h}^+=\langle\!\langle\ G\ \rangle\!\rangle$ for some $G\subseteq \mathcal A_{\mathrm h}$). Define

$$\mathcal{Q} \coloneqq \big\{ \ \mathsf{a} \in \mathcal{A}_\mathrm{h} \ \big| \ \langle \phi \, | \, \pi(\mathsf{a})(\phi) \rangle \geq \mathsf{0} \ \text{for all} \ \ \pi \colon \mathcal{A} \to \mathcal{L}^*(\mathfrak{H}), \phi \in \mathfrak{H} \ \big\},$$

 π bounded positive *-representations. Clearly ${\mathcal Q}$ is a quadratic module of ${\mathcal A}.$

 \rightarrow How are \mathcal{A}_h^+ and \mathcal{Q} related? Certainly $\mathcal{A}_h^+ \subseteq \mathcal{Q}$, but conversely?

The uniform norm

Definition

Let $\mathcal A$ be an ordered *-algebra, then define the map $||\cdot||_\infty\colon \mathcal A\to [0,\infty]$,

$$a\mapsto ||a||_{\infty}\coloneqq\inf\big\{\,\lambda\in[0,\infty]\;\big|\;a^*a\le\lambda^2\,\big\}.$$

The set of *infinitesimal elements* of A is defined as

$$\mathcal{I}_{\mathrm{bd}} \coloneqq \left\{ a \in \mathcal{A} \mid ||a||_{\infty} = 0 \right\},$$

and the set of uniformly bounded elements of ${\cal A}$ as

$$\mathcal{A}_{\mathrm{bd}} := \big\{ a \in \mathcal{A} \mid ||a||_{\infty} < \infty \big\}.$$

The ordered *-algebra \mathcal{A} is called *uniformly bounded* if $\mathcal{A} = \mathcal{A}_{\mathrm{bd}}$.

Cimprič [1]; Schmüdgen [10], ...; part I

Let \mathcal{A} be an ordered *-algebra.

- ullet The uniformly bounded elements $\mathcal{A}_{\mathrm{bd}}$ form a unital *-subalgebra of \mathcal{A} .
- ullet The infinitesimal elements $\mathcal{I}_{\mathrm{bd}}$ form a *-ideal of $\mathcal{A}_{\mathrm{bd}}$.
- The map $||\cdot||_{\infty}$ descends to a C^* -norm on $\mathcal{A}_{\mathrm{bd}}/\mathcal{I}_{\mathrm{bd}}$.

Which ordered *-algebras are uniformly bounded?

If \mathcal{A} is a uniformly bounded ordered *-algebras, then all its positive *-representations are uniformly bounded! But conversely...?

A pathological example

Set $g_1 \coloneqq 2x_1 - 1, g_2 \coloneqq 2x_2 - 1, g_3 \coloneqq 1 - x_1x_2 \in \mathbb{C}[x_1, x_2]_h$ and consider the set $\mathcal{P}(\{g_1, g_2, g_3\}) = \{ \xi \in \mathbb{R}^2 \mid g_i(\xi) \ge 0 \text{ for all } i \in \{1, 2, 3\} \}.$

Then $\mathcal{P}(G)$ is compact but $\mathbb{C}[x_1, x_2]$ with $\mathbb{C}[x_1, x_2]_h^+ := \langle \langle \{g_1, g_2, g_3\} \rangle \rangle$ is not uniformly bounded (see [2, p. 146]).

Schmüdgen's Positivstellensatz, part I

Consider any finite set $g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n]_h$ and let G be the set of all finite products of g_1, \ldots, g_k .

If $\mathcal{P}(G)$ is compact, then $\mathbb{C}[x_1,\ldots,x_n]$ with $\mathbb{C}[x_1,\ldots,x_n]_{\mathrm{h}}^+ := \langle\!\langle G \rangle\!\rangle$ is uniformly bounded.

Schmüdgen, S. (2023)

Consider any set of real polynomials of degree 1 and let G be the set of all their finite products.

If $\mathcal{P}(G)$ is compact and non-empty, then $\mathbb{C}[x_1,\ldots,x_n]$ with $\mathbb{C}[x_1,\ldots,x_n]_{\mathrm{h}}^+:=\langle\!\langle G \rangle\!\rangle$ is uniformly bounded.

Which ordered *-algebras are uniformly bounded?

If $\mathcal A$ is a uniformly bounded ordered *-algebras, then all its positive *-representations are uniformly bounded! But conversely...?

Schmüdgen's Positivstellensatz, part I

Consider any finite set $g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n]_h$ and let G be the set of all finite products of g_1, \ldots, g_k .

If $\mathcal{P}(G)$ is compact, then $\mathbb{C}[x_1,\ldots,x_n]$ with $\mathbb{C}[x_1,\ldots,x_n]^+_h \coloneqq \langle\!\langle G \rangle\!\rangle$ is uniformly bounded.

Schmüdgen, S. [9]

Consider any set of real polynomials of degree 1 and let G be the set of all their finite products.

If $\mathcal{P}(G)$ is compact and non-empty, then $\mathbb{C}[x_1,\ldots,x_n]$ with $\mathbb{C}[x_1,\ldots,x_n]_{\mathfrak{h}}^+ \coloneqq \langle\!\langle G \rangle\!\rangle$ is uniformly bounded.

Another pathological example

Set $G \coloneqq \{x - n \mid n \in \mathbb{N}\} \subseteq \mathbb{C}[x]_h$. Then $\mathcal{P}(G) = \emptyset$, but $\langle\!\langle G \rangle\!\rangle = \{p \in \mathbb{C}[x]_h \mid p(+\infty) \ge 0\}$, and $\mathbb{C}[x]$ with $\mathbb{C}[x]_h^+ \coloneqq \langle\!\langle G \rangle\!\rangle$ is not uniformly bounded.

Which ordered *-algebras are uniformly bounded?

As $\mathcal{A}_{\mathrm{bd}}$ is a unital *-subalgebra of \mathcal{A} , uniform boundedness of a generating subset is sufficient!

• \mathbb{CP}^n via symmetry reduction:

$$\mathbb{C}[z_0,\ldots,z_n,\overline{z}_0,\ldots,\overline{z}_n]^{U(1)} \text{ is generated by } z_i\overline{z}_j,\ i,j\in\{0,\ldots,n\}.$$
 Recall: $\mathcal{J}:=z_0\overline{z}_0+\cdots+z_n\overline{z}_n$ and we consider $\langle\!\langle \{\mathcal{J}-\mu,\mu-\mathcal{J}\} \rangle\!\rangle$, $\mu>0$. In $\mathbb{C}[z_0,\ldots,z_n,\overline{z}_0,\ldots,\overline{z}_n]^{U(1)}/\sup\langle\langle\langle\{\mathcal{J}-\mu,\mu-\mathcal{J}\}\rangle\rangle$:

$$[z_i\overline{z}_j]^*[z_i\overline{z}_j] = [z_j\overline{z}_iz_i\overline{z}_j] \le [z_j\mathcal{J}\overline{z}_j] = \mu[z_j\overline{z}_j] \le \mu\mathcal{J} = \mu^2$$

So
$$[z_i\overline{z}_j] \in (\mathbb{C}[z_0,\ldots,z_n,\overline{z}_0,\ldots,\overline{z}_n]^{U(1)}/\operatorname{supp}\langle\langle \{\mathcal{J}-\mu,\mu-\mathcal{J}\} \rangle\rangle)_{\mathrm{bd}}$$
 for all $i,j\in\{0,\ldots,n\}$.

- Berezin quantization of \mathbb{CP}^n : completely analogous.
- Leavitt path *-algebras: $p_v^2 = p_v$ and $s_e^* s_e = p_{r(e)}$, $v \in E_0$, $e \in E_1$, enforce uniform boundedness. \rightarrow The norm of the graph C^* -algebra is the uniform norm $||\cdot||_{\infty}$.

The Archimedean Positivstellensatz

Schmüdgen [11]

Let \mathcal{A} be a uniformly bounded ordered *-algebra and $a \in \mathcal{A}_h$. If $\langle \phi \, | \, \pi(a)(\phi) \rangle > 0$ for all bounded positive *-representations $\pi \colon \mathcal{A} \to \mathcal{L}^*(\mathfrak{H})$ and $\phi \in \mathfrak{H} \setminus \{0\}$, then $a \in \mathcal{A}_h^+$.

Proof (idea)

If $a\in A_{\rm h}/\mathcal{A}_{\rm h}^+$, construct positive real linear functional $\omega\colon\mathcal{A}_{\rm h}\to\mathbb{R}$ with $\omega(a)\leq 0$ (Hahn–Banach). Extend \mathbb{C} -linearly and apply GNS-construction.

The Archimedean Positivstellensatz

Schmüdgen [11]

Let $\mathcal A$ be a uniformly bounded ordered *-algebra and $a\in\mathcal A_h$. If $\langle\phi\,|\,\pi(a)(\phi)\rangle>0$ for all bounded positive *-representations $\pi\colon\mathcal A\to\mathcal L^*(\mathfrak H)$ and $\phi\in\mathfrak H\setminus\{0\}$, then $a\in\mathcal A_h^+$.

Corollary (Schmüdgen's Positivstellensatz, part II)

Consider any finite set $g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n]_h$ and assume $\mathcal{P}(G)$ is compact. Let G be the set of all finite products of g_1, \ldots, g_k . If $p \in \mathbb{C}[x_1, \ldots, x_n]_h$ fulfils $p(\xi) > 0$ for all $\xi \in \mathcal{P}(G)$, then $p \in \langle \langle G \rangle \rangle$.

Corollary

Let G be a directed graph with finitely many vertices. Write $L^*(G)$ for the Leavitt path *-algebra with its natural quadratic module $\mathcal Q$ and let $\iota\colon L^*(G)\to C^*(G)$ be the embedding in its graph C^* -algebra. Consider $a\in L^*(G)_h$. If $\operatorname{spec}(\iota(a))\in [\epsilon,\infty[$ for some $\epsilon>0$, then $a\in \mathcal Q$.

Closed ordered *-algebras

Grand unified problem is almost solved...

Example

The unital subalgebra

$$\mathcal{A} \coloneqq \left\{ \left(egin{matrix} a & b \ 0 & a \end{matrix}
ight) \, \middle| \, a,b \in \mathbb{C} \,
ight\}$$

of $\mathbb{C}^{2\times 2}$ with elementwise complex conjugation is a commutative *-algebra and

$$\mathcal{A}_{\mathrm{h}}^{++}=\Bigg\{\left(egin{matrix}a&b\0&a\end{matrix}
ight)\Bigg|\ a,b\in\mathbb{R}\ ext{with}\ a>0\ ext{or}\ a=b=0\Bigg\}.$$

So $\mathcal A$ becomes a uniformly bounded ordered *-algebra with $\mathcal A_h^+ \coloneqq \mathcal A_h^{++}.$

- There are $M \in \mathcal{A}_h \setminus \{0\}$ with $M^2 = 0$ (namely if $a = 0, b \neq 0$).
- Consequently $||M||_{\infty} = 0$, i.e. $M \in \mathcal{I}_{bd}$.
- Note also: $\begin{pmatrix} \epsilon & b \\ 0 & \epsilon \end{pmatrix}$ with $\epsilon > 0$ and $b \neq 0$ is in \mathcal{A}_{h}^{++} , unlike its limit $\epsilon \to 0$.

Closed ordered *-algebras

Definition

An ordered *-algebra $\mathcal A$ is (integrally) closed if the following holds: Whenever $a,b\in\mathcal A_{\mathrm h}$ fulfil $a\leq \epsilon b$ for all $\epsilon\in]0,\infty[$, then $a\leq 0$.

Cimprič [1], Schmüdgen [10], ...; part II

If $\mathcal A$ is a closed ordered *-algebra, then $||\cdot||_{\infty}$ is a C^* -norm on $\mathcal A_{\mathrm{bd}}$, $\mathcal I_{\mathrm{bd}}=\{0\}$.

Corollary

The category of closed and uniformly bounded ordered *-algebras with positive unital *-homomorphisms between them is equivalent to the category of pre- C^* -algebras (*-algebras with C^* -norm) and continuous unital *-homomorphisms between them.

Corollary (Archimedean Positivstellensatz revisited)

Let $\mathcal A$ be a closed and uniformly bounded ordered *-algebra and $a\in\mathcal A_h$. Then $a\in\mathcal A_h^+$ if and only if $\langle\phi\,|\,\pi(a)(\phi)\rangle\geq 0$ for all bounded positive *-representations $\pi\colon\mathcal A\to\mathcal L^*(\mathfrak H)$ and $\phi\in\mathfrak H$.

But how to choose generators of \mathcal{A}_h^+ so that \mathcal{A} is closed?

σ -bounded ordered *-algebras

Definition

An ordered *-algebra \mathcal{A} is called σ -bounded if there exists an increasing sequence $(\hat{a}_n)_{n\in\mathbb{N}}$ in $\mathcal{A}_{\mathbf{h}}^+$ that is cofinal, i.e. for all $b\in\mathcal{A}_{\mathbf{h}}$ there is some $n\in\mathbb{N}$ such that $b<\hat{a}_n$.

Examples

- Every uniformly bounded ordered *-algebra is σ -bounded, choose $\hat{a}_n := n\mathbb{1}$ for all $n \in \mathbb{N}$.
- Every countably generated ordered *-algebra is σ -bounded, choose

$$\hat{a}_n := n \sum_{i=1}^n \frac{1 + b_j^2}{2}$$

with $b_1, b_2, \ldots \in \mathcal{A}_h$ a vector space basis of \mathcal{A}_h ; use $\pm b_j \leq (\mathbb{1} + b_j^2)/2$.

An unbounded Gelfand-Naimark theorem

S. [12]

Let $\mathcal A$ be a σ -bounded closed ordered *-algebra, then $\mathcal A$ has a faithful positive *-representation.

Proof

- GNS-construction yields *-representations from positive functionals.
- Hahn-Banach theorem yields positive functionals.
- How to construct the l.c. topology? Use σ -boundedness:

Given a cofinal sequence $(\hat{a}_n)_{n\in\mathbb{N}}$ in \mathcal{A}_h^+ and a sequence $(\delta_n)_{n\in\mathbb{N}}$ in $]0,\infty[$. The union of order intervals

$$U_{\delta} := \bigcup_{n \in \mathbb{N}} \left[- \sum_{j=1}^{n} \delta_{j} \hat{\pmb{a}}_{j} , \sum_{j=1}^{n} \delta_{j} \hat{\pmb{a}}_{j} \right]$$

is an absorbing, balanced, and convex subset of \mathcal{A}_h , hence a 0-neighbourhood.

For any $a \in \mathcal{A}_h \setminus \mathcal{A}_h^+$ there is U_δ such that $(a + U_\delta) \cap \mathcal{A}_h^+ = \emptyset$ (construct $(\delta_n)_{n \in \mathbb{N}}$ recursively using that \mathcal{A} is closed).

[→] Commutative version also available, but more tricky....

So which examples are closed ordered *-algebras?

- Consider a finite set $g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n]_h$, let G be the set of all finite products of g_1, \ldots, g_k and assume that $\mathcal{P}(G)$ is compact. There are many examples in which $\mathbb{C}[x_1, \ldots, x_n] / \operatorname{supp} \langle \! \langle G \rangle \! \rangle$ is a closed uniformly bounded ordered *-algebra with $\mathcal{P}(G)$ having dimension 1 or 2, but not in higher dimensions (see Scheiderer [5], [6], [7]).
- In higher dimensions: Krivine–Stengle Positivstellensatz.
- Especially for \mathbb{CP}^n via symmetry reduction: $\mathbb{C}[z_0,\ldots,z_n,\overline{z}_0,\ldots,\overline{z}_n]^{U(1)}/\sup\langle\langle\{\mathcal{J}-\mu,\mu-\mathcal{J}\}\rangle\rangle$, $\mu>0$ is a closed uniformly bounded ordered *-algebra if and only if n=1.
- But for the quantization of \mathbb{CP}^n we find (Schmitt, S. [8]): $\mathcal{W}(n)^{U(1)}/\sup \langle \{\mathcal{J}-\mu,\mu-\mathcal{J}\} \rangle$, $\mu \geq 0$ is a closed uniformly bounded ordered *-algebra for all $n \in \mathbb{N}$. So $\mathcal{W}(n)^{U(1)}/\sup \langle \{\mathcal{J}-\mu,\mu-\mathcal{J}\} \rangle \cong \mathbb{C}^{d\times d}$, $d \in \mathbb{N}$ for $\mu/\hbar \in \mathbb{N}_0$ and $\mathcal{W}(n)^{U(1)}/\sup \langle \{\mathcal{J}-\mu,\mu-\mathcal{J}\} \rangle \cong \{0\}$ otherwise.
- And for Leavitt path *-algebras?

So which Leavitt path *-algebras give closed ordered *-algebras?

- Of course, all complex matrix algebras.
- Fejér-Riesz theorem:
 Pointwise positive complex polynomials on the circle are sums of squares.
- Matrix-valued Fejér-Riesz theorem:
 Pointwise positive matrix-valued polynomials on the circle are sums of squares (Rosenblum [3]).
- Non-commutative Fejer-Riesz theorem (Savchuk, Schmüdgen [4]): Let $\mathcal{A}:=\langle\,s,s^*\mid s^*s=1\,\rangle$ and let $\pi\colon\mathcal{A}\to\mathcal{L}^*\big(\ell^2(\mathbb{N}_0)\big)$ be the *-representation given by the right shift $\pi(s)$. Consider $a\in\mathcal{A}_h$ such that $\pi(a)$ is positive semi-definite. Then there is $b\in\mathcal{A}$ such that $a=b^*b$.
- Some examples are understood, but no general theory on par with the commutative case.

References — Thank you for your attention!

Canadian Mathematical Bulletin, 52(1):39-52, 2009.

J. Cimprič. A representation theorem for archimedean quadratic modules on *-rings.

A. Prestel and C. Delzell. Positive polynomials: from Hilbert's 17th problem to real algebra.

Springer Science & Business Media, 2013.

M. Rosenblum, Vectorial Toeplitz operators and the Feiér-Riesz theorem. Journal of Mathematical Analysis and Applications, 23(1):139-147, 1968.

Y. Saychuk and K. Schmüdgen. A noncommutative version of the Feiér-Riesz theorem.

Proceedings of the American Mathematical Society, 138(4):1243-1248, 2010. C. Scheiderer, Sums of squares of regular functions on real algebraic varieties.

C. Scheiderer, Sums of squares on real algebraic curves.

Mathematische Zeitschrift, 245:725-760, 2003. C. Scheiderer. Sums of squares on real algebraic surfaces.

manuscripta mathematica, 119:395-410, 2006.

P. Schmitt and M. Schötz. Symmetry reduction of states II: A non-commutative positivstellensatz for cpn.

Linear Algebra and its Applications, 649:326-353, 2022. K. Schmüdgen and M. Schötz. Positivstellensätze for semirings.

ArXiv e-prints, page 2207.02748, 2022. Mathematische Annalen, 331(4):779-794, 2005.

K. Schmüdgen. A strict positivstellensatz for the Wevl algebra.

K. Schmüdgen, Noncommutative Real Algebraic Geometry Some Basic Concepts and First Ideas.

Emerging Applications of Algebraic Geometry, pages 325-350, Springer New York, New York, NY, 2009. M. Schötz, Gelfand-Naimark theorems for ordered *-algebras.

Canadian Journal of Mathematics, online first 2022.

