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Effros-Shen algebras: let t ∈ (0, 1) \Q.
Elliott: there is a unique simple unital AF algebra At with

K0(At) = Z+ tZ ∼= Z2

K0(At)+ = (Z+ tZ) ∩ [0,∞)
[1]0 = 1

To realize the algebra, Effros and Shen used the continued fraction
for t: every t ∈ (0, 1) \Q has a unique infinite simple continued
fraction expansion

t = [0, a1, a2, . . .] :=
1

a1 +
1

a2 +
1

a3 + · · ·

, ai ∈ N+.
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The nth convergent
pn
qn

=
1

a1 +
1

· · ·+
1

an

converges to t as n → ∞,

p0 = 0, p1 = 1, pn = anpn−1 + pn−2

q0 = 1, q1 = a1, qn = anqn−1 + qn−2.

Then can embed Mqn−1 ⊕Mqn−2 ↪→ Mqn ⊕Mqn−1 with
multiplicities given by

(
an 1
1 0

)
:

x ⊕ y 7→ (x ⊕ · · · ⊕ x︸ ︷︷ ︸
an times

⊕y)⊕ x .

At =
⋃∞

n=1Mqn ⊕Mqn−1 .
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The map

(a1, a2, . . .) ∈ (N+)
∞ 7→ [0, a1, a2, . . .] ∈ (0, 1) \Q

is a homeomorphism. Then

ρ0 :
⊔

t∈(0,1)\Q At → (0, 1) \Q, ρ0(At) = t,

can be made into a continuous C ∗-bundle - but the base space is
not locally compact. What can be done at the rational points?
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Each t ∈ (0, 1) ∩Q has two distinct finite simple continued
fraction expansions:

t = [0, a1, . . . , an] = [0, a1, . . . , an−1, an − 1, 1].

These correspond to two finite dimensional C ∗-algebras:

Mqn ⊕Mqn−1 and Mq′n+1
⊕Mq′n ,

defined by the last two convergents of each expansion. (Of course
qn = q′n+1 is the denominator of t.)

In fact, the even-length expansion corresponds to approximation of
t from the right, and the odd-length expansion from the left.
Write At+ and At− for these two C ∗-algebras, and let
X =

(
(0, 1) \Q

)
∪ {t+, t− : t ∈ (0, 1) ∩Q} be the usual

disconnection of (0, 1) at the rational points. Then X is a locally
compact Cantor set, and we can make a continuous C ∗-bundle

ρ :
⊔

x∈X Ax → X , ρ(Ax) = x .
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To get a bundle over (0, 1) we use a different construction. At is
usually presented by a Bratteli diagram:

1

1

q1

q1

q2

q2

q3
· · ·

(a1) (a2) (a3)

It can equally well be described as (the compression of) a graph
algebra: At = Pv1C

∗(E )Pv1 , where

E : v1 v2 v3 v4 · · ·

...
...

...

γ
(1)
1

γ
(2)
1

γ
(a1)
1

γ
(1)
2

γ
(2)
2

γ
(a2)
2

γ
(1)
3

γ
(2)
3

γ
(a3)
3

u2 u3 u4
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How does this go? The directed graph E has no singular vertices,
so v1∂E = v1E

∞. For µ ∈ v1E
∗ we let

Z (µ) = {µx : x ∈ s(µ)E∞}, the set of all infinite paths that begin
with µ. The typical generator SµS

∗
ν (where µ, ν ∈ v1E

∗ and
s(µ) = s(ν)) can be thought of as a (partial) homeomorphism:
Z (ν) → Z (µ). Recall the graph E

1

1

q1

q1

q2

q2

q3
· · ·

(a1) (a2) (a3)

qn = |v1E ∗vn+1|
qn−1 = |v1E ∗un+1|

Therefore {µ ∈ v1E
∗ : |µ| = n} define the minimal diagonal

projections in Mqn ⊕Mqn−1 , and SµS
∗
ν is the matrix unit eµ,ν . The

action given by {SµS∗
ν} is free.
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Now we replace E with a different structure, a category of paths
Λ. Let k = (ki )

∞
i=1 ∈ N∞, and suppose that ki > 0 infinitely often.

Λ(k): v1 v2 v3 v4 · · ·

...
...

...

γ
(1)
1

γ
(2)
1

γ
(k1)
1

γ
(1)
2

γ
(2)
2

γ
(k2)
2

γ
(1)
3

γ
(2)
3

γ
(k3)
3

v1 v2 v3 v4
α1 α2 α3

β1 β2 β3

where we make the identifications αiβi+1 = βiαi+1 for all i . The
subgraph formed by {αi , βi} is a 2-graph, but Λ is not a higher
rank graph. It is a small category satisfying cancellation and
having no nontrivial inverses.
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Categories of paths define C ∗-algebras in much the same way that
directed graphs, higher rank graphs, and submonoids of groups do
- for example, using an étale groupoid. We briefly analyze the
above example.

An element composed of αi ’s and βj ’s can be written with the
edges permuted - it is determined only by how many edges of each
type occur. A typical element of v1Λ looks like

v1α
i1βj1γ

(ℓ1)
i1+j1+1α

i2βj2γ(ℓ2).. · · · γ(ℓm).. αim+1βjm+1

The boundary v1∂Λ = v1Λ
∞ has two kinds of elements:

· v1αi1βj1γ
(ℓ1)
i1+j1+1α

i2βj2γ(ℓ2).. · · · γ(ℓm).. αim+1βjm+1 · · ·

· v1αi1βj1γ
(ℓ1)
i1+j1+1α

i2βj2γ(ℓ2).. · · · γ(ℓm).. αpβq, p + q = ∞.
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Again, for µ, ν ∈ v1Λ, SµS
∗
ν is a typical element of a total set for

Pv1C
∗(Λ)Pv1 . But they no longer act like matrix units. For

example,

Sβ1S
∗
α1

: Z (α1) → Z (β1)

does not act freely on Z (α1) ⊆ v1∂Λ, since

Sβ1S
∗
α1
(v1α

∞β∞) = α∞β∞.
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For these examples of categories of paths we have the following

Theorem. (Mitscher-S) Let (ki )
∞
1 ∈ N∞ with ki > 0 infinitely

often.
1. The (in general) nonsimple continued fraction
[0, 1, k1, 1, k2, 1, . . .] converges to an irrational point of (0, 1).

2. Each t ∈ (0, 1) \Q has a unique expansion of this form.
3. Pv1C

∗(Λ)Pv1
∼= At .

This is very different from the usual construction. The 2-graph
inside Λ produces nontrivial isotropy in the groupoid underlying the
C ∗-algebra - it is not an AF groupoid.
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The proof has three steps:
· calculate the Elliott invariant
· show that the algebra is classifiable
· use the classification theorem (Tikuisis, White, Winter, ......).

The third step means that the proof is nonconstructive - we cannot
exhibit the dense union of finite dimensional subalgebras.
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What happens at rational numbers? Suppose that (ki ) ∈ N∞ is
finitely nonzero. Say km > 0 and ki = 0 for i > m. We still have
convergence of the continued fraction, but to a rational number:

[0, 1, k1, 1, k2, 1, . . .] = [0, 1, k1, 1, . . . , 1, km, 1, 0, 1, 0, 1, 0, . . .]
= [0, 1, k1, 1, . . . , 1, km].

Each rational number in (0, 1) has a unique finite continued
fraction in the above form. This alternate continued fraction
expansion chooses one of the two expansions of a rational number.

Let π : N∞ → [0, 1) be given by π(k) = [0, 1, k1, 1, k2, 1, . . .].
Then π is bijective and continuous, and π−1 is continuous from
the right (but not from the left).
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The category of paths Λ(k) has only finitely many edges that are
not part of the sub-2-graph, but the construction of the C ∗-algebra
goes through without difficulties. The algebra is type I:

0 → K⊕K → Pv1C
∗(Λ(k)∞)Pv1 → Mq ⊗ C (T) → 0.

(The superscript ∞ is a technicality present in the finitely nonzero
case.)

Now we have a single algebra to offer at the rational points of the
interval: for t ∈ [0, 1) ∩Q let k = π−1(t) ∈ N∞. We set

At := Pv1C
∗(Λ(k)∞)Pv1 .

We now define a bundle of C ∗-algebras over [0, 1),

A =
⊔

t∈[0,1) At , by p : A → [0, 1), p(At) = t.
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Let’s see how we might topologise this bundle. For this we
consider a typical generating element independent of the choice of
k . Let µ = µ1µ2 · · ·µn, ν = ν1ν2 · · · νn with

µi , νi ∈ {αi , βi , γ
(j)
i : j ≥ 1} for each i . We ask:

for which k does SµS
∗
ν belong to Aπ(k)?

The answer is: those k for which µ and ν belong to Λ(k). Put

ℓi = max{j : µi = γ
(j)
i or νi = γ

(j)
i }

ℓ = (ℓ1, ℓ2, . . .) ∈ N∞.

Then SµS
∗
ν ∈ Aπ(k) if and only if ki ≥ ℓi , all i .

We need to identify D(ℓ) := {π(k) : ki ≥ ℓi for all i}. Let
m = max{i : ℓi > 0}, so ℓ = (ℓ1, . . . , ℓm, 0, 0, 0, . . .). We build the
answer step by step.
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[0, 1) = [0, 12) ⊔ [12 ,
2
3) ⊔ [23 ,

3
4) ⊔ · · · =

⊔
h≥0

[
h

h+1 ,
h+1
h+2

)
Note that

h

h + 1
=

1

1 + 1
h

= [0, 1, h]. Then

[0, 1) =
⊔

h≥0

[
[0, 1, h], [0, 1, h + 1]

)
{π(k) : k1 ≥ ℓ1} =

⊔
h≥ℓ1

[
[0, 1, h], [0, 1, h + 1]

)
=

[
[0, 1, ℓ1], 1

)
.

We apply the same decomposition to these subintervals:[ h

h + 1
,
h + 1

h + 2

)
=

⊔
ℓ≥0

[ h + ℓ
ℓ+1

h + 1 + ℓ
ℓ+1

,
h + ℓ+1

ℓ+2

h + 1 + ℓ+1
ℓ+2

)
.
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Note that
h + x

h + 1 + x
=

h + x

(h + x) + 1
=

1

1 + 1
h+x

.

Then
h + ℓ

ℓ+1

h + 1 + ℓ
ℓ+1

=
1

1 + 1
h+ ℓ

ℓ+1

=
1

1 + 1
h+ 1

1+ 1
ℓ

= [0, 1, h, 1, ℓ].

Then we have
[

h
h+1 ,

h+1
h+2

)
=

⊔
ℓ≥0

[
[0, 1, h, 1, ℓ], [0, 1, h, 1, ℓ+ 1]

)
.
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Thus

{π(k) : k1 = h, k2 ≥ ℓ2} =
⊔

ℓ≥ℓ2

[
[0, 1, h, 1, ℓ], [0, 1, h, 1, ℓ+ 1]

)
=

[
[0, 1, h, 1, ℓ2], [0, 1, h + 1]

)

{π(k) : k1 ≥ ℓ1, k2 ≥ ℓ2} =
⊔

k1≥ℓ1

[
[0, 1, k1, 1, ℓ2], [0, 1, k1 + 1]

)
.

In general we find that

D(ℓ) := {π(k) : ki ≥ ℓi for 1 ≤ i ≤ m}

=
⊔

ki≥ℓi ,
1≤i≤m−1

[
[0, 1, k1, 1, · · · , km−1, 1, ℓm],

[0, 1, k1, 1, · · · , km−2, 1, km−1 + 1]
)
.

Incidentally, we see that the particular nonsimple continued
fraction expansions we are forced to use are, in fact, quite natural.
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Recall the bundle from earlier:

A =
⊔

t∈[0,1) At , by p : A → [0, 1), p(At) = t.

We will use a space of sections to define a continuous field; this
will then give a topology on the bundle. Let µ, ν, ℓ be as before.
Define f : [0, 1) → A by

f (π(k)) =

{
SµS

∗
ν , if ki ≥ ℓi , all i

0, otherwise.

Then D(ℓ) = {f ̸= 0}. We have to manage the discontinuities of f
at the right endpoints of the intervals in D(ℓ). Since the intervals
making up D(ℓ) do not accumulate at any of their left endpoints,
D(ℓ) is a locally compact subset of [0, 1). We will use sections
ϕ · f where ϕ ∈ C0(D(ℓ)).

Theorem. span{ϕ · f : ϕ ∈ C0(D(ℓ)), f as above} defines an upper
semicontinuous field of C ∗-algebras over [0, 1).
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There is another way to fill in the bundle at rational points. For
µ, ν, ℓ as above, let

D0(ℓ) := int(D(ℓ)),

the (disjoint) union of the interiors of the half-open intervals
making up D(ℓ). We consider the continuous field F defined by

span{ϕ · f : ϕ ∈ C0(D0(ℓ)), f as above}.
The sections in F are continuous at all endpoints of the intervals
in D(ℓ). However, if we let s = π(ℓ), then SµS

∗
ν is no longer the

value at s of a section in F .
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Let Bs = {x ∈ As : x = g(s) for some g ∈ F}.
Then Bs = As̃ , where s̃ = [0, 1, ℓ1, 1, . . . , 1, ℓm−1, 1, ℓm − 1]. (Thus
Bs is a proper subalgebra of As - we have lost some of the
elements.)

For t ∈ (0, 1) \Q we set Bt = At .

Let B =
⊔

t∈[0,1) Bt , q : B → [0, 1) by q(Bt) = t.

Theorem. F is a continuous field of C ∗-algebras, and it
topologises B as a continuous C ∗-bundle.
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It turns out that the usual Effros-Shen algebras may be completed
to a continuous C ∗-bundle over (0, 1) by a similar device. Recall
that a rational number t ∈ (0, 1) has two simple continued fraction
expansions:

t = [0, a1, . . . , an] = [0, a1, . . . , an−1, an − 1, 1],

with corresponding algebras At+ and At− (not nec. in this order)

Mqn ⊕Mqn−1 and Mq′n+1
⊕Mq′n .

Let t̃ = [0, a1, . . . , an−1, an − 1]. Let Ct be the finite dimensional
algebra corresponding to this expansion of t̃. Then

Ct ⊆ At+ ∩ At−.

Letting Ct = At for t ∈ (0, 1) \Q, we obtain a bundle
C =

⊔
t∈(0,1) Ct It is possible to use the same kind of elements

SµS
∗
ν with coefficient functions to define continuous sections of C .

Theorem. C can be topologised as a continuous C ∗-bundle.

What does it all mean???
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