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Effros-Shen algebras: let t € (0,1) \ Q.
Elliott: there is a unique simple unital AF algebra A; with

Ko(A¢) = Z + t7. =2 77

Ko(Ad)+ = (Z +tZ) N [0,0)

[lo=1
To realize the algebra, Effros and Shen used the continued fraction
for t: every t € (0,1) \ Q has a unique infinite simple continued
fraction expansion

t:[O,al,ag,...] = , ai € Ni.
ap +
ar +

a3+...

2/33



The nth convergent Pn _ — 1 converges to t as n — oo,

an n
a J—
! 1
...+7
an
po =0, pr =1, pp = anpn—1+ pn—2

Go=1, g1 = a1, gn = anGn-1 + qn—2.

Then can embed M, _, & Mg, , = My, & Mg, _, with
multiplicities given by (31" é):

XQy—(xd--Dxdy) D x.

ap times

At = Uzozl qu D qu,]_-
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The map
(al, an,.. ) S (N+)Oo — [0, ai,az, .. ] € (07 1) \ Q
is a homeomorphism. Then

po : UieonoAe = (0, 1)\ Q. po(Ae) = t,
can be made into a continuous C*-bundle - but the base space is
not locally compact. What can be done at the rational points?
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Each t € (0,1) N Q has two distinct finite simple continued
fraction expansions:

t=1[0,a1,...,an] =[0,a1,...,8p-1,an — 1,1].
These correspond to two finite dimensional C*-algebras:

qu D qu_l and Mq:wl D Mq;,
defined by the last two convergents of each expansion. (Of course
dn = Q)41 is the denominator of t.)

In fact, the even-length expansion corresponds to approximation of
t from the right, and the odd-length expansion from the left.
Write A4 and A;_ for these two C*-algebras, and let

X =((0,1)\ Q) U{ty,t_: t € (0,1)NQ} be the usual
disconnection of (0, 1) at the rational points. Then X is a locally
compact Cantor set, and we can make a continuous C*-bundle

P Lex Ax = X, p(Ax) = x.
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To get a bundle over (0,1) we use a different construction. A is
usually presented by a Bratteli diagram:

1 (3) g (@) 4 (33) 4

N oKX

1 a1 Q2

It can equally well be described as (the compression of) a graph
algebra: Ay = P,,C*(E)P,,, where

Ao 7422) 7{22)
7%2) 7&2) 7&2)
Nt D m
E V] - 1 V2 < 2 V3 < 3 V4
‘\ ., >< ; >< .
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How does this go? The directed graph E has no singular vertices,
so WOE = viE®. For u € viE* we let

Z(p) = {px : x € s(u)E>}, the set of all infinite paths that begin
with u. The typical generator 5,5 (where p,v € viE* and

s(n) = s(v)) can be thought of as a (partial) homeomorphism:
Z(v) — Z(u). Recall the graph E

1{6]1 (22) 4, (33) 4
1

an = |V1E*Vn+1|

Gn-1 = |ViE*upy1|
Therefore {y € vy E* : |u| = n} define the minimal diagonal
projections in Mg, & M, ,, and 5,5 is the matrix unit e, ,,. The
action given by {5,S5;} is free.

a1 a2
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Now we replace E with a different structure, a category of paths

A. Let k = (k;)?2; € N>, and suppose that k; > 0 infinitely often.

k k: k
75 1) ’Yé 2) ’Yé 3)
2 '2 2
AVEAVE.
m m (1)
A(k) P vy 12 Vg V4
L\ al ----- // Xy 052 _____ /' Xy 043 _____ //
B B B

where we make the identifications ;811 = Bjajy1 for all i. The
subgraph formed by {«;, 8} is a 2-graph, but A is not a higher

rank graph. It is a small category satisfying cancellation and
having no nontrivial inverses.
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Categories of paths define C*-algebras in much the same way that
directed graphs, higher rank graphs, and submonoids of groups do
- for example, using an étale groupoid. We briefly analyze the
above example.
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Categories of paths define C*-algebras in much the same way that
directed graphs, higher rank graphs, and submonoids of groups do
- for example, using an étale groupoid. We briefly analyze the
above example.

An element composed of «;'s and 3;'s can be written with the
edges permuted - it is determined only by how many edges of each
type occur. A typical element of v;A looks like

vla’1 6]1%14_ 1041'2/3]27.(.32) .. ,/-yl(.em)aierl/Bjerl
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Categories of paths define C*-algebras in much the same way that
directed graphs, higher rank graphs, and submonoids of groups do
- for example, using an étale groupoid. We briefly analyze the
above example.

An element composed of «;'s and 3;'s can be written with the
edges permuted - it is determined only by how many edges of each
type occur. A typical element of viA looks like

vla’1 6]1% i 1Ozi2/3j2’y(£2) .. ,/-y(em)aierl/Bjerl
A M M
The boundary vidA = viA° has two kinds of elements:
. Vlalllﬁjl’yl(éj_i _,’_106’25/2’}/(62) . fy(gm)aim+1ﬁjm+1 .
1+4 - -

vial B\t ek Ry @)y apBa, bt g = o
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Again, for u,v € viA, S, S; is a typical element of a total set for
P,, C*(A)P,,. But they no longer act like matrix units. For
example,

SgiSa, 1 Z(on) = Z(B1)
does not act freely on Z(a1) C v10A, since

56,50, (V1> ) = a™ .
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For these examples of categories of paths we have the following

Theorem. (Mitscher-S) Let (k;)$° € N*© with k; > 0 infinitely
often.

1. The (in general) nonsimple continued fraction

[0,1,ki,1, ko, 1,...] converges to an irrational point of (0,1).

2. Each t € (0,1) \ Q has a unique expansion of this form.

3. P,,C*(N)P,, = A;.
This is very different from the usual construction. The 2-graph
inside A produces nontrivial isotropy in the groupoid underlying the
C*-algebra - it is not an AF groupoid.
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The proof has three steps:
- calculate the Elliott invariant
- show that the algebra is classifiable
- use the classification theorem (Tikuisis, White, Winter, ...... )-

The third step means that the proof is nonconstructive - we cannot
exhibit the dense union of finite dimensional subalgebras.
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What happens at rational numbers? Suppose that (k;) € N> is
finitely nonzero. Say k, > 0 and k; = 0 for i > m. We still have
convergence of the continued fraction, but to a rational number:
[0,1,ki,1, ko, 1,...]=[0,1,ke,1,...,1,kn,1,0,1,0,1,0,.. ]
=[0,1,k,1,. ., 1, k]
Each rational number in (0,1) has a unique finite continued
fraction in the above form. This alternate continued fraction
expansion chooses one of the two expansions of a rational number.
Let 7 : N*° — [0,1) be given by m(k) =[0,1, k1,1, ko, 1,...].
Then 7 is bijective and continuous, and 7! is continuous from
the right (but not from the left).
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The category of paths A(k) has only finitely many edges that are
not part of the sub-2-graph, but the construction of the C*-algebra
goes through without difficulties. The algebra is type I:

0— K&K — P, C*(ANK)®)P,, — My @ C(T) — 0.

(The superscript > is a technicality present in the finitely nonzero
case.)

Now we have a single algebra to offer at the rational points of the
interval: for t € [0,1) N Q let k = 771(t) € N*©. We set

A; 1= P, C*(N(k)®)P,,.
We now define a bundle of C*-algebras over [0, 1),
A =1y A by p: o/ —[0,1), p(Ar) = t.
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Let's see how we might topologise this bundle. For this we
consider a typical generating element independent of the choice of
k. Let p = pipo o, V= V1V - Up with
Wi, Vi € {a,-,ﬁ,-,%p) :j > 1} for each i. We ask:

for which k does 5,5 belong to Ay (4)?
The answer is: those k for which 1 and v belong to A(k). Put

i =max{j: pi = ’yfj) or v; = ’yf’j)}

{= (51,52, .. ) e N*°,
Then S,5) € Ak if and only if ki > ¢;, all /.
We need to identify D(¢) := {n(k) : ki > ¢; for all i}. Let
m=max{i: {; >0}, sol=(l1,...,£m,0,0,0,...). We build the
answer step by step.
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0,1) =103 UL HUBE DU =Lyso|sts 25)
hoo1

h+l 141

[0.1) = Lyso|[0,1, 41, 0,1, h +1])

{(7(Kk) k> 01} = Lyor, [[o, 1,h],[0,1, h + 1]) — [[o, 1,0], 1).

Note that

=[0,1, h]. Then
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[0,1)=1[0,5)U[3.3)U[3,3)U _|—|h>0[hi ﬁé)
h 1
Note that =[0,1, h]. Then
h+l 1+1

[0.1) = Lyso|[0,1, 41, 0,1, h +1])

{(7(Kk) k> 01} = Lyor, [[o, 1,h],[0,1,h + 1]) - [[o, 1,0], 1).

We apply the same decomposition to these subintervals:

) = Ul )
h+1"h+2 h+1+ 745 h+1+ 4
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h+x  h+x 1
h+1l4+x (h+x)+1 14457

Note that
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h+ x h+ x

1

Note that = = .
h+14+x  (h+x)+1 1+ ;4
h+ 745
Then %, :Hll
+1+4 5
+1 h+ 755
B 1
=T
+iﬂr@
=1[0,1,h,1,4).
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h+ x B h+ x 1

Note that - =——— = (h+x)+1 1+ 55
h+ 745 1
Then 7 :1 T
ity 1+
1
T 1+
+1+Z
=1[0,1,h,1,4.

Then we have [# QL) |_|£>0[[0 1,h,1,4,[0,1,h, 1,0+ 1])
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Thus
{r(k) : ko= hoko > €2} = sy, [[0, 1,h,1,4],[0,1, h, 1,0+ 1])

= [[0,1,h,1, 221,01, h + 1]
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Thus
{r(k) : ko= hoko > €2} = sy, [[0, 1,h,1,4],[0,1, h, 1,0+ 1])

= [[0,1,h,1, 221,01, h + 1]

{r(k): k1 > ko > €2} = Lo, [[o, 1, ki, 1,65],[0, 1, ky + 1]).
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Thus
{r(k) : ko= hoko > €2} = sy, [[0, 1,h,1,4],[0,1, h, 1,0+ 1])

= [[0,1,h,1, 221,01, h + 1]

{r(k): k1 > ko > €2} = Lo, [[o, 1,ki,1,05], 0,1, ks + 1]).
In general we find that
D(¢) .= {n(k): ki > {j for 1 < i< m}

= U |01k T e ke, .
ki>t;,

1<i<m-1
[0,1, ki, 1, km—2,1, km_1 + 1]).

25/33



Thus
{r(k) : ko= hoko > €2} = sy, [[0, 1,h,1,4],[0,1, h, 1,0+ 1])

= [[0,1,h,1, 221,01, h + 1]

{r(k): k1 > ko > €2} = Lo, [[o, 1,ki,1,05], 0,1, ks + 1]).
In general we find that
D(¢) .= {n(k): ki > {j for 1 < i< m}

= U |01k T e ke, .
ki>t;,

1<i<m-1
[0,1, ki, 1, km—2,1, km_1 + 1]).

Incidentally, we see that the particular nonsimple continued
fraction expansions we are forced to use are, in fact, quite natural.
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Recall the bundle from earlier:
A = |iep1)Ae by p: = [0,1), p(As) = t.
We will use a space of sections to define a continuous field; this

will then give a topology on the bundle. Let u, v, ¢ be as before.
Define f : [0,1) — </ by

S 5;, if k,' Z E,’, all 7
f(m(k)) :{ "

0, otherwise.
Then D(¢) = {f # 0}. We have to manage the discontinuities of
at the right endpoints of the intervals in D(¢). Since the intervals
making up D(¢) do not accumulate at any of their left endpoints,
D(¥) is a locally compact subset of [0,1). We will use sections
¢ - f where ¢ € Co(D(¥)).
Theorem. span{¢-f : ¢ € Co(D(¥)), f as above} defines an upper
semicontinuous field of C*-algebras over [0, 1).
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There is another way to fill in the bundle at rational points. For
w, v, £ as above, let

Do(¢) = int(D(£)),

the (disjoint) union of the interiors of the half-open intervals
making up D(¢). We consider the continuous field F defined by

span{¢ - : ¢ € Co(Do(¢)),f as above}.

The sections in F are continuous at all endpoints of the intervals
in D(€). However, if we let s = 7(¢), then 5,5} is no longer the
value at s of a section in F.
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Let Bs = {x € As : x = g(s) for some g € F}.

Then Bs = Ag, where s =[0,1,¢1,1,...,1,4p,_1,1,¢p, — 1]. (Thus
Bs is a proper subalgebra of As - we have lost some of the
elements.)

For t € (0,1) \ Q we set By = As.
Let 2 = | l;cj01) Br a: # —[0,1) by q(B:) = t.

Theorem. F is a continuous field of C*-algebras, and it
topologises % as a continuous C*-bundle.
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It turns out that the usual Effros-Shen algebras may be completed
to a continuous C*-bundle over (0,1) by a similar device. Recall
that a rational number t € (0, 1) has two simple continued fraction
expansions:

t=1[0,a1,...,a,] =[0,a1,...,an-1,an — 1,1],
with corresponding algebras A;; and A;_ (not nec. in this order)
Mg, ® Mg,_, and Mg @& Mg, .
Let t =[0,a1,...,3,_1,a, — 1]. Let C; be~the finite dimensional
algebra corresponding to this expansion of t. Then
Gt C Ay NA:.

Letting C; = A; for t € (0,1) \ Q, we obtain a bundle
% = |te0,1) Ce It is possible to use the same kind of elements
5,5, with coefficient functions to define continuous sections of .

Theorem. ¥ can be topologised as a continuous C*-bundle.
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It turns out that the usual Effros-Shen algebras may be completed
to a continuous C*-bundle over (0,1) by a similar device. Recall
that a rational number t € (0, 1) has two simple continued fraction
expansions:
t=1[0,a1,...,a,] =[0,a1,...,an-1,an — 1,1],
with corresponding algebras A;; and A;_ (not nec. in this order)
qu D qu71 and Mq;H ) Mq/n.

Let t =[0,a1,...,3,-1,a, — 1]. Let C; be the finite dimensional
algebra corresponding to this expansion of t. Then
Gt C Ay NA:.

Letting C; = A; for t € (0,1) \ Q, we obtain a bundle
% = |te0,1) Ce It is possible to use the same kind of elements
5,5, with coefficient functions to define continuous sections of .

Theorem. ¥ can be topologised as a continuous C*-bundle.

What does it all mean???
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