C*-bundles containing the Effros-Shen algebras

Jack Spielberg, Arizona State University (joint work with Ian Mitscher, Colorado School of Mines)

Banach Center, 3-7 July 2023, Bedlewo

Effros-Shen algebras: let $t \in(0,1) \backslash \mathbb{Q}$.
Elliott: there is a unique simple unital AF algebra A_{t} with

$$
\begin{aligned}
& K_{0}\left(A_{t}\right)=\mathbb{Z}+t \mathbb{Z} \cong \mathbb{Z}^{2} \\
& K_{0}\left(A_{t}\right)_{+}=(\mathbb{Z}+t \mathbb{Z}) \cap[0, \infty) \\
& {[1]_{0}=1}
\end{aligned}
$$

To realize the algebra, Effros and Shen used the continued fraction for t : every $t \in(0,1) \backslash \mathbb{Q}$ has a unique infinite simple continued fraction expansion

$$
t=\left[0, a_{1}, a_{2}, \ldots\right]:=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}, \quad a_{i} \in \mathbb{N}_{+} .
$$

The nth convergent $\frac{p_{n}}{q_{n}}=\frac{1}{a_{1}+\frac{1}{\cdots+\frac{1}{a_{n}}}}$ converges to t as $n \rightarrow \infty$,

$$
\begin{aligned}
p_{0}=0, & p_{1}=1, \quad p_{n}=a_{n} p_{n-1}+p_{n-2} \\
q_{0}=1, & q_{1}=a_{1}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2} .
\end{aligned}
$$

Then can embed $M_{q_{n-1}} \oplus M_{q_{n-2}} \hookrightarrow M_{q_{n}} \oplus M_{q_{n-1}}$ with multiplicities given by $\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right)$:

$$
x \oplus y \mapsto(\underbrace{x \oplus \cdots \oplus x}_{a_{n} \text { times }} \oplus y) \oplus x
$$

$A_{t}=\overline{\bigcup_{n=1}^{\infty} M_{q_{n}} \oplus M_{q_{n-1}}}$.

The map

$$
\left(a_{1}, a_{2}, \ldots\right) \in\left(\mathbb{N}_{+}\right)^{\infty} \mapsto\left[0, a_{1}, a_{2}, \ldots\right] \in(0,1) \backslash \mathbb{Q}
$$

is a homeomorphism. Then

$$
\rho_{0}: \bigsqcup_{t \in(0,1) \backslash \mathbb{Q}} A_{t} \rightarrow(0,1) \backslash \mathbb{Q}, \rho_{0}\left(A_{t}\right)=t,
$$

can be made into a continuous C^{*}-bundle - but the base space is not locally compact. What can be done at the rational points?

Each $t \in(0,1) \cap \mathbb{Q}$ has two distinct finite simple continued fraction expansions:

$$
t=\left[0, a_{1}, \ldots, a_{n}\right]=\left[0, a_{1}, \ldots, a_{n-1}, a_{n}-1,1\right] .
$$

These correspond to two finite dimensional C^{*}-algebras:

$$
M_{q_{n}} \oplus M_{q_{n-1}} \text { and } M_{q_{n+1}^{\prime}} \oplus M_{q_{n}^{\prime}}
$$

defined by the last two convergents of each expansion. (Of course $q_{n}=q_{n+1}^{\prime}$ is the denominator of t.)
In fact, the even-length expansion corresponds to approximation of t from the right, and the odd-length expansion from the left.
Write A_{t+} and A_{t-} for these two C^{*}-algebras, and let
$X=((0,1) \backslash \mathbb{Q}) \cup\left\{t_{+}, t_{-}: t \in(0,1) \cap \mathbb{Q}\right\}$ be the usual disconnection of $(0,1)$ at the rational points. Then X is a locally compact Cantor set, and we can make a continuous C^{*}-bundle

$$
\rho: \bigsqcup_{x \in X} A_{x} \rightarrow X, \rho\left(A_{x}\right)=x
$$

To get a bundle over $(0,1)$ we use a different construction. A_{t} is usually presented by a Bratteli diagram:

It can equally well be described as (the compression of) a graph algebra: $A_{t}=P_{v_{1}} C^{*}(E) P_{v_{1}}$, where

How does this go? The directed graph E has no singular vertices, so $v_{1} \partial E=v_{1} E^{\infty}$. For $\mu \in v_{1} E^{*}$ we let $Z(\mu)=\left\{\mu x: x \in s(\mu) E^{\infty}\right\}$, the set of all infinite paths that begin with μ. The typical generator $S_{\mu} S_{\nu}^{*}$ (where $\mu, \nu \in v_{1} E^{*}$ and $s(\mu)=s(\nu))$ can be thought of as a (partial) homeomorphism: $Z(\nu) \rightarrow Z(\mu)$. Recall the graph E

$$
\begin{aligned}
& q_{n}=\left|v_{1} E^{*} v_{n+1}\right| \\
& q_{n-1}=\left|v_{1} E^{*} u_{n+1}\right|
\end{aligned}
$$

Therefore $\left\{\mu \in v_{1} E^{*}:|\mu|=n\right\}$ define the minimal diagonal projections in $M_{q_{n}} \oplus M_{q_{n-1}}$, and $S_{\mu} S_{\nu}^{*}$ is the matrix unit $e_{\mu, \nu}$. The action given by $\left\{S_{\mu} S_{\nu}^{*}\right\}$ is free.

Now we replace E with a different structure, a category of paths Λ. Let $k=\left(k_{i}\right)_{i=1}^{\infty} \in \mathbb{N}^{\infty}$, and suppose that $k_{i}>0$ infinitely often.

where we make the identifications $\alpha_{i} \beta_{i+1}=\beta_{i} \alpha_{i+1}$ for all i. The subgraph formed by $\left\{\alpha_{i}, \beta_{i}\right\}$ is a 2-graph, but Λ is not a higher rank graph. It is a small category satisfying cancellation and having no nontrivial inverses.

Categories of paths define C^{*}-algebras in much the same way that directed graphs, higher rank graphs, and submonoids of groups do - for example, using an étale groupoid. We briefly analyze the above example.

Categories of paths define C^{*}-algebras in much the same way that directed graphs, higher rank graphs, and submonoids of groups do - for example, using an étale groupoid. We briefly analyze the above example.
An element composed of α_{i} 's and β_{j} 's can be written with the edges permuted - it is determined only by how many edges of each type occur. A typical element of $v_{1} \wedge$ looks like

$$
v_{1} \alpha^{i_{1}} \beta^{j_{1}} \gamma_{i_{1}+j_{1}+1}^{\left(\ell_{1}\right)} \alpha^{i_{2}} \beta^{j_{2}} \gamma_{. .}^{\left(\ell_{2}\right)} \cdots \gamma_{. .}^{\left(\ell_{m}\right)} \alpha^{i_{m+1}} \beta^{j_{m+1}}
$$

Categories of paths define C^{*}-algebras in much the same way that directed graphs, higher rank graphs, and submonoids of groups do - for example, using an étale groupoid. We briefly analyze the above example.
An element composed of α_{i} 's and β_{j} 's can be written with the edges permuted - it is determined only by how many edges of each type occur. A typical element of $v_{1} \wedge$ looks like

$$
v_{1} \alpha^{i_{1}} \beta^{j_{1}} \gamma_{i_{1}+j_{1}+1}^{\left(\ell_{1}\right)} \alpha^{i_{2}} \beta^{j_{2}} \gamma_{. .}^{\left(\ell_{2}\right)} \cdots \gamma_{. .}^{\left(\ell_{m}\right)} \alpha^{i_{m+1}} \beta^{j_{m+1}}
$$

The boundary $v_{1} \partial \Lambda=v_{1} \Lambda^{\infty}$ has two kinds of elements:

- $v_{1} \alpha^{i_{1}} \beta^{j_{1}} \gamma_{i_{1}+j_{1}+1}^{\left(\ell_{1}\right)} \alpha^{i_{2}} \beta^{j_{2}} \gamma_{. .}^{\left(\ell_{2}\right)} \ldots \gamma_{. .}^{\left(\ell_{m}\right)} \alpha^{i_{m+1}} \beta^{j_{m+1}} \ldots$
- $v_{1} \alpha^{i_{1}} \beta^{j_{1}} \gamma_{i_{1}+j_{1}+1}^{\left(\ell_{1}\right)} \alpha^{i_{2}} \beta^{j_{2}} \gamma_{. .}^{\left(\ell_{2}\right)} \cdots \gamma_{. .}^{\left(\ell_{m}\right)} \alpha^{p} \beta^{q}, p+q=\infty$.

Again, for $\mu, \nu \in v_{1} \Lambda, S_{\mu} S_{\nu}^{*}$ is a typical element of a total set for $P_{v_{1}} C^{*}(\Lambda) P_{v_{1}}$. But they no longer act like matrix units. For example,

$$
S_{\beta_{1}} S_{\alpha_{1}}^{*}: Z\left(\alpha_{1}\right) \rightarrow Z\left(\beta_{1}\right)
$$

does not act freely on $Z\left(\alpha_{1}\right) \subseteq v_{1} \partial \Lambda$, since

$$
S_{\beta_{1}} S_{\alpha_{1}}^{*}\left(v_{1} \alpha^{\infty} \beta^{\infty}\right)=\alpha^{\infty} \beta^{\infty} .
$$

For these examples of categories of paths we have the following
Theorem. (Mitscher-S) Let $\left(k_{i}\right)_{1}^{\infty} \in \mathbb{N}^{\infty}$ with $k_{i}>0$ infinitely often.

1. The (in general) nonsimple continued fraction
$\left[0,1, k_{1}, 1, k_{2}, 1, \ldots\right]$ converges to an irrational point of $(0,1)$.
2. Each $t \in(0,1) \backslash \mathbb{Q}$ has a unique expansion of this form.
3. $P_{v_{1}} C^{*}(\Lambda) P_{v_{1}} \cong A_{t}$.

This is very different from the usual construction. The 2-graph inside Λ produces nontrivial isotropy in the groupoid underlying the C^{*}-algebra - it is not an AF groupoid.

The proof has three steps:

- calculate the Elliott invariant
- show that the algebra is classifiable
- use the classification theorem (Tikuisis, White, Winter,).

The third step means that the proof is nonconstructive - we cannot exhibit the dense union of finite dimensional subalgebras.

What happens at rational numbers? Suppose that $\left(k_{i}\right) \in \mathbb{N}^{\infty}$ is finitely nonzero. Say $k_{m}>0$ and $k_{i}=0$ for $i>m$. We still have convergence of the continued fraction, but to a rational number:

$$
\begin{aligned}
{\left[0,1, k_{1}, 1, k_{2}, 1, \ldots\right] } & =\left[0,1, k_{1}, 1, \ldots, 1, k_{m}, 1,0,1,0,1,0, \ldots\right] \\
& =\left[0,1, k_{1}, 1, \ldots, 1, k_{m}\right] .
\end{aligned}
$$

Each rational number in $(0,1)$ has a unique finite continued fraction in the above form. This alternate continued fraction expansion chooses one of the two expansions of a rational number.
Let $\pi: \mathbb{N}^{\infty} \rightarrow[0,1)$ be given by $\pi(k)=\left[0,1, k_{1}, 1, k_{2}, 1, \ldots\right]$.
Then π is bijective and continuous, and π^{-1} is continuous from the right (but not from the left).

The category of paths $\Lambda(k)$ has only finitely many edges that are not part of the sub-2-graph, but the construction of the C^{*}-algebra goes through without difficulties. The algebra is type I:

$$
0 \rightarrow \mathcal{K} \oplus \mathcal{K} \rightarrow P_{\mathrm{v}_{1}} C^{*}\left(\Lambda(k)^{\infty}\right) P_{\mathrm{v}_{1}} \rightarrow M_{q} \otimes C(\mathbb{T}) \rightarrow 0 .
$$

(The superscript ${ }^{\infty}$ is a technicality present in the finitely nonzero case.)
Now we have a single algebra to offer at the rational points of the interval: for $t \in[0,1) \cap \mathbb{Q}$ let $k=\pi^{-1}(t) \in \mathbb{N}^{\infty}$. We set

$$
A_{t}:=P_{v_{1}} C^{*}\left(\Lambda(k)^{\infty}\right) P_{v_{1}} .
$$

We now define a bundle of C^{*}-algebras over $[0,1)$,

$$
\mathscr{A}=\bigsqcup_{t \in[0,1)} A_{t}, \text { by } p: \mathscr{A} \rightarrow[0,1), p\left(A_{t}\right)=t
$$

Let's see how we might topologise this bundle. For this we consider a typical generating element independent of the choice of
k. Let $\mu=\mu_{1} \mu_{2} \cdots \mu_{n}, \nu=\nu_{1} \nu_{2} \cdots \nu_{n}$ with
$\mu_{i}, \nu_{i} \in\left\{\alpha_{i}, \beta_{i}, \gamma_{i}^{(j)}: j \geq 1\right\}$ for each i. We ask:
for which k does $S_{\mu} S_{\nu}^{*}$ belong to $A_{\pi(k)}$?
The answer is: those k for which μ and ν belong to $\Lambda(k)$. Put

$$
\begin{aligned}
& \ell_{i}=\max \left\{j: \mu_{i}=\gamma_{i}^{(j)} \text { or } \nu_{i}=\gamma_{i}^{(j)}\right\} \\
& \ell=\left(\ell_{1}, \ell_{2}, \ldots\right) \in \mathbb{N}^{\infty}
\end{aligned}
$$

Then $S_{\mu} S_{\nu}^{*} \in A_{\pi(k)}$ if and only if $k_{i} \geq \ell_{i}$, all i.
We need to identify $D(\ell):=\left\{\pi(k): k_{i} \geq \ell_{i}\right.$ for all $\left.i\right\}$. Let $m=\max \left\{i: \ell_{i}>0\right\}$, so $\ell=\left(\ell_{1}, \ldots, \ell_{m}, 0,0,0, \ldots\right)$. We build the answer step by step.

$$
[0,1)=\left[0, \frac{1}{2}\right) \sqcup\left[\frac{1}{2}, \frac{2}{3}\right) \sqcup\left[\frac{2}{3}, \frac{3}{4}\right) \sqcup \cdots=\bigsqcup_{h \geq 0}\left[\frac{h}{h+1}, \frac{h+1}{h+2}\right)
$$

Note that $\frac{h}{h+1}=\frac{1}{1+\frac{1}{h}}=[0,1, h]$. Then
$[0,1)=\bigsqcup_{h \geq 0}[[0,1, h],[0,1, h+1])$
$\left.\left\{\pi(k): k_{1} \geq \ell_{1}\right\}=\bigsqcup_{h \geq \ell_{1}}[0,1, h],[0,1, h+1]\right)=\left[\left[0,1, \ell_{1}\right], 1\right)$.

$$
[0,1)=\left[0, \frac{1}{2}\right) \sqcup\left[\frac{1}{2}, \frac{2}{3}\right) \sqcup\left[\frac{2}{3}, \frac{3}{4}\right) \sqcup \cdots=\bigsqcup_{h \geq 0}\left[\frac{h}{h+1}, \frac{h+1}{h+2}\right)
$$

Note that $\frac{h}{h+1}=\frac{1}{1+\frac{1}{h}}=[0,1, h]$. Then
$[0,1)=\bigsqcup_{h \geq 0}[[0,1, h],[0,1, h+1])$
$\left.\left\{\pi(k): k_{1} \geq \ell_{1}\right\}=\bigsqcup_{h \geq \ell_{1}}[0,1, h],[0,1, h+1]\right)=\left[\left[0,1, \ell_{1}\right], 1\right)$.
We apply the same decomposition to these subintervals:
$\left[\frac{h}{h+1}, \frac{h+1}{h+2}\right)=\bigsqcup_{\ell \geq 0}\left[\frac{h+\frac{\ell}{\ell+1}}{h+1+\frac{\ell}{\ell+1}}, \frac{h+\frac{\ell+1}{\ell+2}}{h+1+\frac{\ell+1}{\ell+2}}\right)$.

Note that $\frac{h+x}{h+1+x}=\frac{h+x}{(h+x)+1}=\frac{1}{1+\frac{1}{h+x}}$.

Note that $\frac{h+x}{h+1+x}=\frac{h+x}{(h+x)+1}=\frac{1}{1+\frac{1}{h+x}}$.
Then $\quad \frac{h+\frac{\ell}{\ell+1}}{h+1+\frac{\ell}{\ell+1}}=\frac{1}{1+\frac{1}{h+\frac{\ell}{\ell+1}}}$

$$
\begin{aligned}
& =\frac{1}{1+\frac{1}{h+\frac{1}{1+\frac{1}{\ell}}}} \\
& =[0,1, h, 1, \ell] .
\end{aligned}
$$

Note that $\frac{h+x}{h+1+x}=\frac{h+x}{(h+x)+1}=\frac{1}{1+\frac{1}{h+x}}$.
Then $\quad \frac{h+\frac{\ell}{\ell+1}}{h+1+\frac{\ell}{\ell+1}}=\frac{1}{1+\frac{1}{h+\frac{\ell}{\ell+1}}}$

$$
\begin{aligned}
& =\frac{1}{1+\frac{1}{h+\frac{1}{1+\frac{1}{\ell}}}} \\
& =[0,1, h, 1, \ell] .
\end{aligned}
$$

Then we have $\left[\frac{h}{h+1}, \frac{h+1}{h+2}\right)=\bigsqcup_{\ell \geq 0}[[0,1, h, 1, \ell],[0,1, h, 1, \ell+1])$.

Thus

$$
\begin{aligned}
\left\{\pi(k): k_{1}=h, k_{2} \geq \ell_{2}\right\} & =\bigsqcup_{\ell \geq \ell_{2}}[[0,1, h, 1, \ell],[0,1, h, 1, \ell+1]) \\
& =\left[\left[0,1, h, 1, \ell_{2}\right],[0,1, h+1]\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\{\pi(k): k_{1}=h, k_{2} \geq \ell_{2}\right\} & =\bigsqcup_{\ell \geq \ell_{2}}[[0,1, h, 1, \ell],[0,1, h, 1, \ell+1]) \\
& =\left[\left[0,1, h, 1, \ell_{2}\right],[0,1, h+1]\right) \\
\left\{\pi(k): k_{1} \geq \ell_{1}, k_{2} \geq \ell_{2}\right\} & =\bigsqcup_{k_{1} \geq \ell_{1}}\left[\left[0,1, k_{1}, 1, \ell_{2}\right],\left[0,1, k_{1}+1\right]\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\{\pi(k): k_{1}=h, k_{2} \geq \ell_{2}\right\} & =\bigsqcup_{\ell \geq \ell_{2}}[[0,1, h, 1, \ell],[0,1, h, 1, \ell+1]) \\
& =\left[\left[0,1, h, 1, \ell_{2}\right],[0,1, h+1]\right)
\end{aligned}
$$

$$
\left\{\pi(k): k_{1} \geq \ell_{1}, k_{2} \geq \ell_{2}\right\}=\bigsqcup_{k_{1} \geq \ell_{1}}\left[\left[0,1, k_{1}, 1, \ell_{2}\right],\left[0,1, k_{1}+1\right]\right)
$$

In general we find that

$$
\begin{aligned}
D(\ell) & :=\left\{\pi(k): k_{i} \geq \ell_{i} \text { for } 1 \leq i \leq m\right\} \\
& =\bigsqcup_{\substack{k_{i} \geq \ell_{i}, 1 \leq i \leq m-1}}\left[\left[0,1, k_{1}, 1, \cdots, k_{m-1}, 1, \ell_{m}\right],\right.
\end{aligned}
$$

$$
\left.\left[0,1, k_{1}, 1, \cdots, k_{m-2}, 1, k_{m-1}+1\right]\right)
$$

Thus

$$
\begin{aligned}
\left\{\pi(k): k_{1}=h, k_{2} \geq \ell_{2}\right\} & =\bigsqcup_{\ell \geq \ell_{2}}[[0,1, h, 1, \ell],[0,1, h, 1, \ell+1]) \\
& =\left[\left[0,1, h, 1, \ell_{2}\right],[0,1, h+1]\right)
\end{aligned}
$$

$$
\left\{\pi(k): k_{1} \geq \ell_{1}, k_{2} \geq \ell_{2}\right\}=\bigsqcup_{k_{1} \geq \ell_{1}}\left[\left[0,1, k_{1}, 1, \ell_{2}\right],\left[0,1, k_{1}+1\right]\right)
$$

In general we find that
$D(\ell):=\left\{\pi(k): k_{i} \geq \ell_{i}\right.$ for $\left.1 \leq i \leq m\right\}$

$$
=\bigsqcup_{\substack{k_{i} \geq \ell_{i}, 1 \leq i \leq m-1}}\left[\left[0,1, k_{1}, 1, \cdots, k_{m-1}, 1, \ell_{m}\right],\right.
$$

$$
\left.\left[0,1, k_{1}, 1, \cdots, k_{m-2}, 1, k_{m-1}+1\right]\right)
$$

Incidentally, we see that the particular nonsimple continued fraction expansions we are forced to use are, in fact, quite natural.

Recall the bundle from earlier:

$$
\mathscr{A}=\bigsqcup_{t \in[0,1)} A_{t}, \text { by } p: \mathscr{A} \rightarrow[0,1), p\left(A_{t}\right)=t
$$

We will use a space of sections to define a continuous field; this will then give a topology on the bundle. Let μ, ν, ℓ be as before. Define $f:[0,1) \rightarrow \mathscr{A}$ by

$$
f(\pi(k))= \begin{cases}S_{\mu} S_{\nu}^{*}, & \text { if } k_{i} \geq \ell_{i}, \text { all } i \\ 0, & \text { otherwise }\end{cases}
$$

Then $D(\ell)=\{f \neq 0\}$. We have to manage the discontinuities of f at the right endpoints of the intervals in $D(\ell)$. Since the intervals making up $D(\ell)$ do not accumulate at any of their left endpoints, $D(\ell)$ is a locally compact subset of $[0,1)$. We will use sections $\phi \cdot f$ where $\phi \in C_{0}(D(\ell))$.
Theorem. $\operatorname{span}\left\{\phi \cdot f: \phi \in C_{0}(D(\ell)), f\right.$ as above $\}$ defines an upper semicontinuous field of C^{*}-algebras over $[0,1)$.

There is another way to fill in the bundle at rational points. For μ, ν, ℓ as above, let

$$
D_{0}(\ell):=\operatorname{int}(D(\ell)),
$$

the (disjoint) union of the interiors of the half-open intervals making up $D(\ell)$. We consider the continuous field \mathcal{F} defined by $\operatorname{span}\left\{\phi \cdot f: \phi \in C_{0}\left(D_{0}(\ell)\right), f\right.$ as above $\}$.
The sections in \mathcal{F} are continuous at all endpoints of the intervals in $D(\ell)$. However, if we let $s=\pi(\ell)$, then $S_{\mu} S_{\nu}^{*}$ is no longer the value at s of a section in \mathcal{F}.

Let $B_{s}=\left\{x \in A_{s}: x=g(s)\right.$ for some $\left.g \in \mathcal{F}\right\}$.
Then $B_{s}=A_{\widetilde{s}}$, where $\widetilde{s}=\left[0,1, \ell_{1}, 1, \ldots, 1, \ell_{m-1}, 1, \ell_{m}-1\right]$. (Thus B_{s} is a proper subalgebra of A_{s} - we have lost some of the elements.)

For $t \in(0,1) \backslash \mathbb{Q}$ we set $B_{t}=A_{t}$.
Let $\mathscr{B}=\bigsqcup_{t \in[0,1)} B_{t}, q: \mathscr{B} \rightarrow[0,1)$ by $q\left(B_{t}\right)=t$.
Theorem. \mathcal{F} is a continuous field of C^{*}-algebras, and it topologises \mathscr{B} as a continuous C^{*}-bundle.

It turns out that the usual Effros-Shen algebras may be completed to a continuous C^{*}-bundle over $(0,1)$ by a similar device. Recall that a rational number $t \in(0,1)$ has two simple continued fraction expansions:

$$
t=\left[0, a_{1}, \ldots, a_{n}\right]=\left[0, a_{1}, \ldots, a_{n-1}, a_{n}-1,1\right]
$$

with corresponding algebras A_{t+} and A_{t-} (not nec. in this order)

$$
M_{q_{n}} \oplus M_{q_{n-1}} \text { and } M_{q_{n+1}^{\prime}} \oplus M_{q_{n}^{\prime}}
$$

Let $\tilde{t}=\left[0, a_{1}, \ldots, a_{n-1}, a_{n}-1\right]$. Let C_{t} be the finite dimensional algebra corresponding to this expansion of \tilde{t}. Then

$$
C_{t} \subseteq A_{t+} \cap A_{t-}
$$

Letting $C_{t}=A_{t}$ for $t \in(0,1) \backslash \mathbb{Q}$, we obtain a bundle $\mathscr{C}=\bigsqcup_{t \in(0,1)} C_{t}$ It is possible to use the same kind of elements $S_{\mu} S_{\nu}^{*}$ with coefficient functions to define continuous sections of \mathscr{C}.
Theorem. \mathscr{C} can be topologised as a continuous C^{*}-bundle.

It turns out that the usual Effros-Shen algebras may be completed to a continuous C^{*}-bundle over $(0,1)$ by a similar device. Recall that a rational number $t \in(0,1)$ has two simple continued fraction expansions:

$$
t=\left[0, a_{1}, \ldots, a_{n}\right]=\left[0, a_{1}, \ldots, a_{n-1}, a_{n}-1,1\right]
$$

with corresponding algebras A_{t+} and A_{t-} (not nec. in this order)

$$
M_{q_{n}} \oplus M_{q_{n-1}} \text { and } M_{q_{n+1}^{\prime}} \oplus M_{q_{n}^{\prime}}
$$

Let $\tilde{t}=\left[0, a_{1}, \ldots, a_{n-1}, a_{n}-1\right]$. Let C_{t} be the finite dimensional algebra corresponding to this expansion of \tilde{t}. Then

$$
C_{t} \subseteq A_{t+} \cap A_{t-}
$$

Letting $C_{t}=A_{t}$ for $t \in(0,1) \backslash \mathbb{Q}$, we obtain a bundle $\mathscr{C}=\bigsqcup_{t \in(0,1)} C_{t}$ It is possible to use the same kind of elements $S_{\mu} S_{\nu}^{*}$ with coefficient functions to define continuous sections of \mathscr{C}.
Theorem. \mathscr{C} can be topologised as a continuous C^{*}-bundle.
What does it all mean???

