C*-bundles containing the Effros-Shen algebras

Jack Spielberg, Arizona State University (joint work with Ian Mitscher, Colorado School of Mines)

Banach Center, 3-7 July 2023, Bedlewo

Effros-Shen algebras: let $t \in (0,1) \setminus \mathbb{Q}$.

Elliott: there is a unique simple unital AF algebra A_t with

$$egin{aligned} \mathcal{K}_0(A_t) &= \mathbb{Z} + t\mathbb{Z} \cong \mathbb{Z}^2 \ \mathcal{K}_0(A_t)_+ &= (\mathbb{Z} + t\mathbb{Z}) \cap [0,\infty) \ [1]_0 &= 1 \end{aligned}$$

To realize the algebra, Effros and Shen used the continued fraction for t: every $t \in (0,1) \setminus \mathbb{Q}$ has a unique infinite simple continued fraction expansion

$$t = [0, a_1, a_2, \ldots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \cdots}}}, \quad a_i \in \mathbb{N}_+$$

The nth convergent $\frac{p_n}{q_n} = \frac{1}{a_1 + \frac{1}{\cdots + \frac{1}{a_n}}}$ converges to t as $n \to \infty$,

$$p_0 = 0$$
, $p_1 = 1$, $p_n = a_n p_{n-1} + p_{n-2}$
 $q_0 = 1$, $q_1 = a_1$, $q_n = a_n q_{n-1} + q_{n-2}$.

Then can embed $M_{q_{n-1}}\oplus M_{q_{n-2}}\hookrightarrow M_{q_n}\oplus M_{q_{n-1}}$ with multiplicities given by $\left(\begin{smallmatrix} a_n & 1 \\ 1 & 0\end{smallmatrix}\right)$:

$$x \oplus y \mapsto (\underbrace{x \oplus \cdots \oplus x}_{a_n \text{ times}} \oplus y) \oplus x.$$

$$A_t = \overline{\bigcup_{n=1}^{\infty} M_{q_n} \oplus M_{q_{n-1}}}.$$

The map

$$(a_1, a_2, \ldots) \in (\mathbb{N}_+)^{\infty} \mapsto [0, a_1, a_2, \ldots] \in (0, 1) \setminus \mathbb{Q}$$

is a homeomorphism. Then

$$\rho_0: \bigsqcup_{t\in(0,1)\setminus\mathbb{Q}} A_t \to (0,1)\setminus\mathbb{Q}, \ \rho_0(A_t)=t,$$

can be made into a continuous C^* -bundle - but the base space is not locally compact. What can be done at the rational points?

Each $t \in (0,1) \cap \mathbb{Q}$ has two distinct finite simple continued fraction expansions:

$$t = [0, a_1, \ldots, a_n] = [0, a_1, \ldots, a_{n-1}, a_n - 1, 1].$$

These correspond to two finite dimensional C^* -algebras:

$$M_{q_n} \oplus M_{q_{n-1}}$$
 and $M_{q'_{n+1}} \oplus M_{q'_n}$,

defined by the last two convergents of each expansion. (Of course $q_n = q'_{n+1}$ is the denominator of t.)

In fact, the even-length expansion corresponds to approximation of t from the right, and the odd-length expansion from the left.

Write A_{t+} and A_{t-} for these two C^* -algebras, and let $X = ((0,1) \setminus \mathbb{Q}) \cup \{t_+, t_- : t \in (0,1) \cap \mathbb{Q}\}$ be the usual disconnection of (0,1) at the rational points. Then X is a locally compact Cantor set, and we can make a continuous C^* -bundle

$$\rho: \bigsqcup_{x \in X} A_x \to X$$
, $\rho(A_x) = x$.

To get a bundle over (0,1) we use a different construction. A_t is usually presented by a Bratteli diagram:

$$1 \underbrace{\frac{(a_1)}{q_1}}_{q_1} \underbrace{\frac{(a_2)}{q_2}}_{q_1} \underbrace{\frac{(a_3)}{q_3}}_{q_2} \cdots$$

It can equally well be described as (the compression of) a graph algebra: $A_t = P_{\nu_1} C^*(E) P_{\nu_1}$, where

How does this go? The directed graph E has no singular vertices, so $v_1\partial E=v_1E^\infty$. For $\mu\in v_1E^*$ we let $Z(\mu)=\{\mu x:x\in s(\mu)E^\infty\}$, the set of all infinite paths that begin with μ . The typical generator $S_\mu S_\nu^*$ (where $\mu,\nu\in v_1E^*$ and $s(\mu)=s(\nu)$) can be thought of as a (partial) homeomorphism: $Z(\nu)\to Z(\mu)$. Recall the graph E

$$q_n = |v_1 E^* v_{n+1}|$$

 $q_{n-1} = |v_1 E^* u_{n+1}|$

Therefore $\{\mu \in v_1E^* : |\mu| = n\}$ define the minimal diagonal projections in $M_{q_n} \oplus M_{q_{n-1}}$, and $S_\mu S_\nu^*$ is the matrix unit $e_{\mu,\nu}$. The action given by $\{S_\mu S_\nu^*\}$ is free.

Now we replace E with a different structure, a category of paths Λ . Let $k = (k_i)_{i=1}^{\infty} \in \mathbb{N}^{\infty}$, and suppose that $k_i > 0$ infinitely often.

where we make the identifications $\alpha_i\beta_{i+1}=\beta_i\alpha_{i+1}$ for all i. The subgraph formed by $\{\alpha_i,\beta_i\}$ is a 2-graph, but Λ is not a higher rank graph. It is a small category satisfying cancellation and having no nontrivial inverses.

Categories of paths define C^* -algebras in much the same way that directed graphs, higher rank graphs, and submonoids of groups do - for example, using an étale groupoid. We briefly analyze the above example.

Categories of paths define C^* -algebras in much the same way that directed graphs, higher rank graphs, and submonoids of groups do - for example, using an étale groupoid. We briefly analyze the above example.

An element composed of α_i 's and β_j 's can be written with the edges permuted - it is determined only by how many edges of each type occur. A typical element of $v_1\Lambda$ looks like

$$v_1 \alpha^{i_1} \beta^{j_1} \gamma_{i_1+j_1+1}^{(\ell_1)} \alpha^{i_2} \beta^{j_2} \gamma_{..}^{(\ell_2)} \cdots \gamma_{..}^{(\ell_m)} \alpha^{i_{m+1}} \beta^{j_{m+1}}$$

Categories of paths define C^* -algebras in much the same way that directed graphs, higher rank graphs, and submonoids of groups do - for example, using an étale groupoid. We briefly analyze the above example.

An element composed of α_i 's and β_j 's can be written with the edges permuted - it is determined only by how many edges of each type occur. A typical element of $v_1\Lambda$ looks like

$$v_1 \alpha^{i_1} \beta^{j_1} \gamma_{i_1+j_1+1}^{(\ell_1)} \alpha^{i_2} \beta^{j_2} \gamma_{..}^{(\ell_2)} \cdots \gamma_{..}^{(\ell_m)} \alpha^{i_{m+1}} \beta^{j_{m+1}}$$

The boundary $v_1 \partial \Lambda = v_1 \Lambda^{\infty}$ has two kinds of elements:

•
$$v_1 \alpha^{i_1} \beta^{j_1} \gamma_{i_1+j_1+1}^{(\ell_1)} \alpha^{i_2} \beta^{j_2} \gamma_{..}^{(\ell_2)} \cdots \gamma_{..}^{(\ell_m)} \alpha^{i_{m+1}} \beta^{j_{m+1}} \cdots$$

$$\cdot v_1 \alpha^{i_1} \beta^{j_1} \gamma_{i_1+j_1+1}^{(\ell_1)} \alpha^{i_2} \beta^{j_2} \gamma_{\dots}^{(\ell_2)} \cdots \gamma_{\dots}^{(\ell_m)} \alpha^p \beta^q, \ p+q=\infty.$$

Again, for $\mu, \nu \in v_1 \Lambda$, $S_\mu S_\nu^*$ is a typical element of a total set for $P_{v_1} C^*(\Lambda) P_{v_1}$. But they no longer act like matrix units. For example,

$$S_{\beta_1}S_{\alpha_1}^*:Z(\alpha_1)\to Z(\beta_1)$$

does not act freely on $Z(\alpha_1) \subseteq v_1 \partial \Lambda$, since

$$S_{\beta_1}S_{\alpha_1}^*(v_1\alpha^\infty\beta^\infty)=\alpha^\infty\beta^\infty.$$

For these examples of categories of paths we have the following **Theorem.** (Mitscher-S) Let $(k_i)_1^{\infty} \in \mathbb{N}^{\infty}$ with $k_i > 0$ infinitely often.

- 1. The (in general) nonsimple continued fraction $[0, 1, k_1, 1, k_2, 1, \ldots]$ converges to an irrational point of (0, 1).
- 2. Each $t \in (0,1) \setminus \mathbb{Q}$ has a unique expansion of this form.
- 3. $P_{v_1}C^*(\Lambda)P_{v_1}\cong A_t$.

This is very different from the usual construction. The 2-graph inside Λ produces nontrivial isotropy in the groupoid underlying the C^* -algebra - it is not an AF groupoid.

The proof has three steps:

- · calculate the Elliott invariant
- · show that the algebra is classifiable
- use the classification theorem (Tikuisis, White, Winter,).

The third step means that the proof is nonconstructive - we cannot exhibit the dense union of finite dimensional subalgebras.

What happens at rational numbers? Suppose that $(k_i) \in \mathbb{N}^{\infty}$ is finitely nonzero. Say $k_m > 0$ and $k_i = 0$ for i > m. We still have convergence of the continued fraction, but to a rational number:

$$[0,1,k_1,1,k_2,1,\ldots] = [0,1,k_1,1,\ldots,1,k_m,1,0,1,0,1,0,\ldots] = [0,1,k_1,1,\ldots,1,k_m].$$

Each rational number in (0,1) has a *unique* finite continued fraction in the above form. This alternate continued fraction expansion *chooses* one of the two expansions of a rational number.

Let $\pi: \mathbb{N}^{\infty} \to [0,1)$ be given by $\pi(k) = [0,1,k_1,1,k_2,1,\ldots]$. Then π is bijective and continuous, and π^{-1} is continuous from the right (but not from the left).

The category of paths $\Lambda(k)$ has only finitely many edges that are not part of the sub-2-graph, but the construction of the C^* -algebra goes through without difficulties. The algebra is type I:

$$0 \to \mathcal{K} \oplus \mathcal{K} \to P_{\nu_1} C^*(\Lambda(k)^{\infty}) P_{\nu_1} \to M_q \otimes C(\mathbb{T}) \to 0.$$

(The superscript $^{\infty}$ is a technicality present in the finitely nonzero case.)

Now we have a single algebra to offer at the rational points of the interval: for $t \in [0,1) \cap \mathbb{Q}$ let $k = \pi^{-1}(t) \in \mathbb{N}^{\infty}$. We set

$$A_t := P_{\nu_1} C^*(\Lambda(k)^{\infty}) P_{\nu_1}.$$

We now define a bundle of C^* -algebras over [0,1),

$$\mathscr{A} = \bigsqcup_{t \in [0,1)} A_t$$
, by $p : \mathscr{A} \to [0,1)$, $p(A_t) = t$.

Let's see how we might topologise this bundle. For this we consider a typical generating element independent of the choice of k. Let $\mu = \mu_1 \mu_2 \cdots \mu_n, \nu = \nu_1 \nu_2 \cdots \nu_n$ with $\mu_i, \nu_i \in \{\alpha_i, \beta_i, \gamma_i^{(j)} : j \geq 1\}$ for each i. We ask:

for which k does $S_{\mu}S_{\nu}^{*}$ belong to $A_{\pi(k)}$?

The answer is: those k for which μ and ν belong to $\Lambda(k)$. Put

$$\ell_i = \max\{j : \mu_i = \gamma_i^{(j)} \text{ or } \nu_i = \gamma_i^{(j)}\}$$

$$\ell = (\ell_1, \ell_2, \dots) \in \mathbb{N}^{\infty}.$$

Then $S_{\mu}S_{\nu}^* \in A_{\pi(k)}$ if and only if $k_i \geq \ell_i$, all i.

We need to identify $D(\ell):=\{\pi(k): k_i\geq \ell_i \text{ for all } i\}$. Let $m=\max\{i:\ell_i>0\}$, so $\ell=(\ell_1,\ldots,\ell_m,0,0,0,\ldots)$. We build the answer step by step.

$$[0,1) = [0,\frac{1}{2}) \sqcup [\frac{1}{2},\frac{2}{3}) \sqcup [\frac{2}{3},\frac{3}{4}) \sqcup \cdots = \bigsqcup_{h\geq 0} \left[\frac{h}{h+1},\frac{h+1}{h+2}\right]$$

Note that $\displaystyle \frac{h}{h+1} = \frac{1}{1+\frac{1}{h}} = [0,1,h].$ Then

$$[0,1) = \bigsqcup_{h \ge 0} [[0,1,h],[0,1,h+1])$$

$$\{\pi(k): k_1 \geq \ell_1\} = \bigsqcup_{h \geq \ell_1} [[0, 1, h], [0, 1, h+1]) = [[0, 1, \ell_1], 1).$$

$$[0,1) = [0,\frac{1}{2}) \sqcup [\frac{1}{2},\frac{2}{3}) \sqcup [\frac{2}{3},\frac{3}{4}) \sqcup \cdots = \bigsqcup_{h\geq 0} \left[\frac{h}{h+1},\frac{h+1}{h+2}\right]$$

Note that $\frac{h}{h+1} = \frac{1}{1+\frac{1}{h}} = [0,1,h]$. Then

$$[0,1) = \bigsqcup_{h \geq 0} \Big[[0,1,h], [0,1,h+1] \Big)$$

$$\{\pi(k): k_1 \geq \ell_1\} = \bigsqcup_{h \geq \ell_1} \Big[[0, 1, h], [0, 1, h+1] \Big) = \Big[[0, 1, \ell_1], 1 \Big).$$

We apply the same decomposition to these subintervals:

$$\left[\frac{h}{h+1}, \frac{h+1}{h+2}\right) = \bigsqcup_{\ell > 0} \left[\frac{h + \frac{\ell}{\ell+1}}{h+1 + \frac{\ell}{\ell+1}}, \frac{h + \frac{\ell+1}{\ell+2}}{h+1 + \frac{\ell+1}{\ell+2}}\right).$$

Note that
$$\frac{h+x}{h+1+x} = \frac{h+x}{(h+x)+1} = \frac{1}{1+\frac{1}{h+x}}$$
.

Note that
$$\frac{h+x}{h+1+x} = \frac{h+x}{(h+x)+1} = \frac{1}{1+\frac{1}{h+x}}$$
.

Then
$$\frac{h+\frac{\ell}{\ell+1}}{h+1+\frac{\ell}{\ell+1}} = \frac{1}{1+\frac{1}{h+\frac{\ell}{\ell+1}}}$$

$$= \frac{1}{1+\frac{1}{h+\frac{1}{1+\frac{1}{\ell}}}}$$

$$= [0, 1, h, 1, \ell].$$

Note that
$$\frac{h+x}{h+1+x} = \frac{h+x}{(h+x)+1} = \frac{1}{1+\frac{1}{h+x}}$$
.

Then
$$\frac{h + \frac{\ell}{\ell + 1}}{h + 1 + \frac{\ell}{\ell + 1}} = \frac{1}{1 + \frac{1}{h + \frac{\ell}{\ell + 1}}}$$

$$= \frac{1}{1 + \frac{1}{h + \frac{1}{1 + \frac{1}{\ell}}}}$$

$$= [0, 1, h, 1, \ell].$$

Then we have $\left[\frac{h}{h+1},\frac{h+1}{h+2}\right)=\bigsqcup_{\ell\geq 0}\left[[0,1,h,1,\ell],[0,1,h,1,\ell+1]\right)$.

$$\begin{aligned} \{\pi(k): k_1 = h, k_2 \ge \ell_2\} &= \bigsqcup_{\ell \ge \ell_2} \Big[[0, 1, h, 1, \ell], [0, 1, h, 1, \ell + 1] \Big) \\ &= \Big[[0, 1, h, 1, \ell_2], [0, 1, h + 1] \Big) \end{aligned}$$

$$\{\pi(k): k_1 = h, k_2 \ge \ell_2\} = \bigsqcup_{\ell \ge \ell_2} \Big[[0, 1, h, 1, \ell], [0, 1, h, 1, \ell + 1] \Big)$$
$$= \Big[[0, 1, h, 1, \ell_2], [0, 1, h + 1] \Big)$$

$$\{\pi(k): k_1 \geq \ell_1, k_2 \geq \ell_2\} = \bigsqcup_{k_1 \geq \ell_1} \Big[[0, 1, k_1, 1, \ell_2], [0, 1, k_1 + 1] \Big).$$

$$\{\pi(k): k_1 = h, k_2 \ge \ell_2\} = \bigsqcup_{\ell \ge \ell_2} \Big[[0, 1, h, 1, \ell], [0, 1, h, 1, \ell + 1] \Big)$$
$$= \Big[[0, 1, h, 1, \ell_2], [0, 1, h + 1] \Big)$$

$$\{\pi(k): k_1 \geq \ell_1, k_2 \geq \ell_2\} = \bigsqcup_{k_1 \geq \ell_1} \Big[[0, 1, k_1, 1, \ell_2], [0, 1, k_1 + 1] \Big).$$

In general we find that

$$D(\ell) := \{ \pi(k) : k_i \ge \ell_i \text{ for } 1 \le i \le m \}$$

$$= \bigsqcup_{\substack{k_i \ge \ell_i, \\ 1 \le i \le m-1}} \left[[0, 1, k_1, 1, \cdots, k_{m-1}, 1, \ell_m], \right.$$

$$[0, 1, k_1, 1, \cdots, k_{m-2}, 1, k_{m-1} + 1] \right).$$

$$[0,1,k_1,1,\cdots,k_{m-2},1,k_{m-1}+1]$$
).

$$\{\pi(k): k_1 = h, k_2 \ge \ell_2\} = \bigsqcup_{\ell \ge \ell_2} \Big[[0, 1, h, 1, \ell], [0, 1, h, 1, \ell + 1] \Big)$$
$$= \Big[[0, 1, h, 1, \ell_2], [0, 1, h + 1] \Big)$$

$$\{\pi(k): k_1 \geq \ell_1, k_2 \geq \ell_2\} = \bigsqcup_{k_1 \geq \ell_1} \Big[[0, 1, k_1, 1, \ell_2], [0, 1, k_1 + 1] \Big).$$

In general we find that

$$D(\ell) := \{ \pi(k) : k_i \ge \ell_i \text{ for } 1 \le i \le m \}$$

$$= \bigsqcup_{\substack{k_i \ge \ell_i, \\ 1 \le i \le m-1}} \left[[0, 1, k_1, 1, \cdots, k_{m-1}, 1, \ell_m], \right.$$

$$[0, 1, k_1, 1, \cdots, k_{m-2}, 1, k_{m-1} + 1] \right).$$

Incidentally, we see that the particular nonsimple continued fraction expansions we are forced to use are, in fact, quite natural.

Recall the bundle from earlier:

$$\mathscr{A} = \bigsqcup_{t \in [0,1)} A_t$$
, by $p : \mathscr{A} \to [0,1)$, $p(A_t) = t$.

We will use a space of sections to define a continuous field; this will then give a topology on the bundle. Let μ, ν, ℓ be as before. Define $f: [0,1) \to \mathscr{A}$ by

$$f(\pi(k)) = egin{cases} S_{\mu}S_{
u}^*, & ext{if } k_i \geq \ell_i, ext{ all } i \ 0, & ext{otherwise.} \end{cases}$$

Then $D(\ell) = \{f \neq 0\}$. We have to manage the discontinuities of f at the right endpoints of the intervals in $D(\ell)$. Since the intervals making up $D(\ell)$ do not accumulate at any of their left endpoints, $D(\ell)$ is a locally compact subset of [0,1). We will use sections $\phi \cdot f$ where $\phi \in C_0(D(\ell))$.

Theorem. span $\{\phi \cdot f : \phi \in C_0(D(\ell)), f \text{ as above}\}$ defines an upper semicontinuous field of C^* -algebras over [0,1).

There is another way to fill in the bundle at rational points. For μ, ν, ℓ as above, let

$$D_0(\ell) := \operatorname{int}(D(\ell)),$$

the (disjoint) union of the interiors of the half-open intervals making up $D(\ell)$. We consider the continuous field $\mathcal F$ defined by $\operatorname{span}\{\phi\cdot f:\phi\in C_0(D_0(\ell)),f\text{ as above}\}.$

The sections in \mathcal{F} are continuous at all endpoints of the intervals in $D(\ell)$. However, if we let $s=\pi(\ell)$, then $S_{\mu}S_{\nu}^{*}$ is no longer the value at s of a section in \mathcal{F} .

Let $B_s = \{x \in A_s : x = g(s) \text{ for some } g \in \mathcal{F}\}.$

Then $B_s = A_{\widetilde{s}}$, where $\widetilde{s} = [0, 1, \ell_1, 1, \dots, 1, \ell_{m-1}, 1, \ell_m - 1]$. (Thus B_s is a proper subalgebra of A_s - we have lost some of the elements.)

For $t \in (0,1) \setminus \mathbb{Q}$ we set $B_t = A_t$.

Let
$$\mathscr{B} = \bigsqcup_{t \in [0,1)} B_t$$
, $q : \mathscr{B} \to [0,1)$ by $q(B_t) = t$.

Theorem. \mathcal{F} is a continuous field of C^* -algebras, and it topologises \mathscr{B} as a continuous C^* -bundle.

It turns out that the usual Effros-Shen algebras may be completed to a continuous C^* -bundle over (0,1) by a similar device. Recall that a rational number $t \in (0,1)$ has two simple continued fraction expansions:

$$t = [0, a_1, \ldots, a_n] = [0, a_1, \ldots, a_{n-1}, a_n - 1, 1],$$

with corresponding algebras A_{t+} and A_{t-} (not nec. in this order)

$$M_{q_n} \oplus M_{q_{n-1}}$$
 and $M_{q'_{n+1}} \oplus M_{q'_n}$.

Let $\widetilde{t}=[0,a_1,\ldots,a_{n-1},a_n-1]$. Let C_t be the finite dimensional algebra corresponding to this expansion of \widetilde{t} . Then

$$C_t \subseteq A_{t+} \cap A_{t-}$$
.

Letting $C_t = A_t$ for $t \in (0,1) \setminus \mathbb{Q}$, we obtain a bundle $\mathscr{C} = \bigsqcup_{t \in (0,1)} C_t$ It is possible to use the same kind of elements $S_\mu S_\nu^*$ with coefficient functions to define continuous sections of \mathscr{C} .

Theorem. \mathscr{C} can be topologised as a continuous C^* -bundle.

It turns out that the usual Effros-Shen algebras may be completed to a continuous C^* -bundle over (0,1) by a similar device. Recall that a rational number $t \in (0,1)$ has two simple continued fraction expansions:

$$t = [0, a_1, \ldots, a_n] = [0, a_1, \ldots, a_{n-1}, a_n - 1, 1],$$

with corresponding algebras A_{t+} and A_{t-} (not nec. in this order)

$$M_{q_n} \oplus M_{q_{n-1}}$$
 and $M_{q'_{n+1}} \oplus M_{q'_n}$.

Let $\widetilde{t} = [0, a_1, \dots, a_{n-1}, a_n - 1]$. Let C_t be the finite dimensional algebra corresponding to this expansion of \widetilde{t} . Then

$$C_t \subseteq A_{t+} \cap A_{t-}$$
.

Letting $C_t = A_t$ for $t \in (0,1) \setminus \mathbb{Q}$, we obtain a bundle $\mathscr{C} = \bigsqcup_{t \in (0,1)} C_t$ It is possible to use the same kind of elements $S_{\mu}S_{\nu}^*$ with coefficient functions to define continuous sections of \mathscr{C} .

Theorem. \mathscr{C} can be topologised as a continuous C^* -bundle.

What does it all mean???