PRINCIPAL DIFFERENTIAL CALCULI ON QUANTUM FLAG MANIFOLDS

Thomas Weber (University of Bologna)

Będlewo Conference Center, Poland

07.07.2023

Based on [Aschieri-Fioresi-Latini-TW '21]

Plan of talk: 1. Noncommutative differential geometry

 (H, Δ, ϵ, S) Hopf algebra A right H-comodule algebra

"Problem": A differential calculus $\Omega^{\bullet}(A)$ on A is not unique! Which one to choose?

1st main question: Given a (faithfully flat) Hopf-Galois extension $B := A^{coH} \subseteq A$ can we find noncommutative differential calculi $\Omega^{\bullet}(A)$, $\Omega^{\bullet}(H)$ such that

$$\Omega^{ullet}(B) = \Omega^{ullet}(A)^{\operatorname{co}\Omega^{ullet}(H)} \subseteq \Omega^{ullet}(A)$$

is a Hopf-Galois extension of graded algebras?

We give conditions for this to holds as first order differential calculi: \rightsquigarrow Principal covariant calculi

$$0 \to \underbrace{\mathcal{A} \otimes_B \Omega^1(B)}_{\cong \Omega^1_{\mathrm{hor}}(\mathcal{A})} \to \Omega^1(\mathcal{A}) \xrightarrow{\mathrm{ver}} \underbrace{\mathcal{A} \Box_H \Omega^1(\mathcal{H})}_{=\Omega^1_{\mathrm{ver}}(\mathcal{A})} \to 0$$

2/25

Plan of talk: 2. Quantum principal bundles and sheaves

In noncommutative differential geometry there is (usually) no underlying topological space. Algebras and modules are understood as global functions or sections.

2nd main question: How to quantize a projective space, like $\mathbb{C}\mathbf{P}^1 = U_{\text{north}} \cup U_{\text{south}}$, which has only trivial global functions but non-trivial local data?

Quantum ringed space $(\mathbb{C}P^1, \mathcal{O}_{\mathbb{C}P^1})$ with $\mathcal{O}_{\mathbb{C}P^1}(\mathbb{C}P^1) = \mathbb{C}$, $\mathcal{O}_{\mathbb{C}P^1}(U_1) = \mathbb{C}[x_1/x_0]$, $\mathcal{O}_{\mathbb{C}P^1}(U_2) = \mathbb{C}[x_0/x_1]$, $\mathcal{O}_{\mathbb{C}P^1}(U_1 \cap U_2) = \mathbb{C}[x_0/x_1, x_1/x_0]$.

- Study sheaves ${\mathcal F}$ of ${\it H}\mbox{-}comodule$ algebras which are locally Hopf-Galois extensions.
- Define differential calculi on ${\cal F}$ as sheaves which are locally (principal covariant) calculi.
- Explicit construction based on O_q(G) with structure Hopf algebra O_q(P) for G complex semisimple Lie group and P a parabolic subgroup.
 → Ore extension!
- Examples feature graph algebras, like $\mathcal{O}_q(SU_2)$, $\mathcal{O}_q(\mathbb{S}^2)$, $\mathcal{O}(\mathbb{C}\mathbf{P}^1)$,...

Open questions: Are differential calculi on graph algebras determined by graphs? Is the theory of QPBs (sometimes) better understood in graph language?

Hopf-Galois Extensions

Let \Bbbk be a field.

 (H, Δ, ϵ, S) Hopf algebra with coproduct $\Delta \colon H \to H \otimes H$, counit $\epsilon \colon H \to \Bbbk$ and antipode $S \colon H \to H$. Sweedler's notation $\Delta(h) = h_1 \otimes h_2$.

 (A, δ_A) right *H*-comodule algebra with coaction $\delta_A : A \to A \otimes H$. In particular δ_A is algebra morphism $\delta_A(aa') = \delta_A(a)\delta_A(a')$, $\delta_A(1_A) = 1_A \otimes 1_H$. Sweedler's notation $\delta_A(a) = a_0 \otimes a_1$.

 $B := A^{\mathrm{co}H} := \{ a \in A \mid \delta_A(a) = a \otimes 1 \}$

Definition (Kreimer-Takeuchi '81)

 $B \subseteq A$ is called a Hopf-Galois extension if the canonical map

$$\chi \colon A \otimes_B A \to A \otimes H, \qquad a \otimes_B a' \mapsto aa'_0 \otimes a'_1$$

is a bijection.

Example

- i.) If A = H then $\Bbbk = A^{\operatorname{co} H} \subseteq A$ is Hopf-Galois extension with $\chi^{-1}(h \otimes h') = hS(h'_1) \otimes h'_2$.
- ii.) $\pi: P \to M$ principal *G*-bundle, $A = \mathcal{C}^{\infty}(P)$, $H = \mathcal{C}^{\infty}(G)$. Right *G*-action $r: P \times G \to P$ induces right coaction $\delta_A := r^* : A \to A \otimes H$. $B := A^{\operatorname{co} H} = \mathcal{C}^{\infty}(P/G) = \mathcal{C}^{\infty}(M)$ $\phi: P \times G \to P \times_M P$, $(p, g) \mapsto (p, r(p, g))$ induces $\chi := \phi^*$ and χ is bijection if r is free and transitive on fibers.

iii.) $A = \mathcal{O}_q(\mathrm{SL}_2(\mathbb{C}))$ free algebra generated by $\alpha, \beta, \gamma, \delta$ modulo

$$\begin{split} &\alpha\beta = q^{-1}\beta\alpha, \quad \alpha\gamma = q^{-1}\gamma\alpha, \quad \beta\delta = q^{-1}\delta\beta, \quad \gamma\delta = q^{-1}\delta\gamma, \\ &\beta\gamma = \gamma\beta, \quad \alpha\delta - \delta\alpha = (q^{-1} - q)\beta\gamma, \quad \alpha\delta - q^{-1}\beta\gamma = 1 \end{split}$$

is Hopf algebra with $\Delta \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \otimes \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$.

Hopf algebra quotient $\pi: A \to H = \mathcal{O}(U(1)), \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \to \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$. Then A is a right H-comodule algebra with $\delta_A = (\operatorname{id} \otimes \pi) \circ \Delta : A \to A \otimes H$ and $B = A^{\operatorname{co} H} = \mathcal{O}_q(\mathbb{S}^2)$ is the Podleś sphere.

One can show that $B \subseteq A$ is faithfully flat Hopf-Galois extension.

A real form of $SL_q(2, \mathbb{C})$ is $SU_q(2)$ and the QPB

$$\mathcal{O}_q(\mathbb{S}^2) = \mathcal{O}_q(\mathrm{SU}(2))^{\mathrm{co}\,\mathcal{O}(U(1))}$$

corresponds to the graph algebras

 $\bullet \longrightarrow \bullet \bullet$

Principal comodule algebras

Definition

 (A, δ_A) is called a principal comodule algebra if

- i.) $B := A^{\operatorname{co} H} \subseteq A$ is a Hopf-Galois extension and
- ii.) A is a faithfully flat right (or left) B-module, i.e. ${}_{B}\mathcal{M} \to {}_{A}\mathcal{M}^{H}$, $N \mapsto A \otimes_{B} N$ is an exact functor which reflects exactness.

Functor of coinvariants ${}_{A}\mathcal{M}^{H} \rightarrow {}_{B}\mathcal{M}, \ M \mapsto M^{\mathrm{co}H}$.

Theorem (Schneider '90)

The following are equivalent.

- i.) (A, δ_A) is a principal comodule algebra.
- ii.) ${}_{B}\mathcal{M} \cong {}_{A}\mathcal{M}^{H}$ are equivalent categories, namely

 $(A \otimes_B N)^{\operatorname{co} H} \cong N, \qquad A \otimes_B M^{\operatorname{co} H} \cong M.$

Example

- i.) $\mathcal{O}_q(\mathrm{SL}_2(\mathbb{C}))$ with Hopf algebra $H = \mathcal{O}(U(1))$ as before.
- ii.) Every crossed product algebra $B \#_{\sigma} H$, where $\sigma \colon H \otimes H \to B$ is a 2-cocycle with values in B.

First Order Differential Calculi

 (A, δ_A) right *H*-comodule algebra.

Definition (Woronowicz '89)

We call (Γ, d) a first order differential calculus (FODC) on A, if

1 \(\Gamma\) is A-bimodule.
2 \(d: A \rightarrow \Gamma\) is k-linear s.t. d(ab) = d(a)b + ad(b) (Leibniz rule) holds for all a, b \in A.
3 \(\Gamma\) = AdA := span_k \{ad(b) | a, b \in A\}. (Surjectivity)

We call a FODC (Γ , d) on A right H-covariant if $\Gamma \in {}_{A}\mathcal{M}_{A}^{H}$ and d is right H-colinear.

Example

i.) $A = \mathscr{C}^{\infty}(M), \ \Gamma = \Gamma^{\infty}(T^*M), \ d: A \to \Gamma$ de Rham differential $df|_U = \frac{\partial f}{\partial x^i} dx^i$ in local chart (U, x). Coaction dual to Lie group action $G \circlearrowright M$.

ii.) The universal FODC
$$\Gamma_u = \ker \mu_A$$
, $d_u(a) = 1 \otimes a - a \otimes 1$.
Every FODC on A is a quotient of (Γ_u, d_u) .

Base forms and horizontal forms

 (A, δ_A) principal comodule algebra, i.e. faithfully flat H-Galois extension of $B = A^{coH}$. (Γ , d) right *H*-covariant FODC on *A*, in particular, for *a*, *a'* \in *A*, $\omega \in \Gamma$

$$\Delta_{\Gamma}(a \cdot \omega \cdot a') = \delta_{A}(a)\Delta_{\Gamma}(\omega)\delta_{A}(a').$$

Base forms: $\Gamma_B := B dB \subseteq \Gamma$ with differential $d_B := d|_B \colon B \to \Gamma_B$

Horizontal forms: $\Gamma^{hor} := A\Gamma_B$

Proposition

 $\Gamma_{\mathcal{B}}=\Gamma^{\mathrm{hor}}\cap\Gamma^{\mathrm{co}\mathcal{H}}$

Proof.

Clearly $\Gamma_B \subseteq \Gamma^{coH}$ and thus, by the flatness of A,

$$A \otimes_B \Gamma_B \to A \otimes_B \Gamma^{coH} \cong \Gamma$$

is an injection $\implies A \otimes_B \Gamma_B \cong A\Gamma_B$. Then

$$\Gamma_B \cong (A \otimes_B \Gamma_B)^{\operatorname{co} H} \cong (A \Gamma_B)^{\operatorname{co} H} = \Gamma^{\operatorname{hor}} \cap \Gamma^{\operatorname{co} H}.$$

Principal calculi and vertical forms

 (A, δ_A) principal comodule algebra.

Definition

A right *H*-covariant FODC (Γ , d) on *A* and a bicovariant FODC (Γ _{*H*}, d_{*H*}) on *H* are called a principal covariant calculus if ver is well-defined and we have exact sequence

$$0 \to A \otimes_B \Gamma_B \to \Gamma \xrightarrow{\text{ver}} A \Box_H \Gamma_H \to 0.$$

Above $A \Box_H \Gamma_H := \operatorname{span}_{\Bbbk} \{ a \otimes \omega_H \in A \otimes \Gamma_H \mid \delta_A(a) \otimes \omega_H = a \otimes \Gamma_H \Delta(\omega_H) \}$ is the cotensor product over H and

ver:
$$\Gamma \to A \Box_H \Gamma_H$$
, $a da' \mapsto a_0 a'_0 \otimes a_1 d_H a'_1$

the vertical map. Warning: ver might not be well-defined!

Example

Consider the principal comodule algebra $B := \mathcal{O}_q(\mathbb{S}^2) \subseteq A := \mathcal{O}_q(\mathrm{SL}_2(\mathbb{C}))$ with structure Hopf algebra $H = \mathcal{O}(U(1))$.

- The 3-dim. right covariant FODC on A is a principal covariant calculus.
- The 4-dim. bicovariant FODC on A is not a principal covariant calculus.

Example (The *q*-monopole bundle)

Consider the principal comodule algebra $B := \mathcal{O}_q(\mathbb{S}^2) \subseteq A := \mathcal{O}_q(\mathrm{SL}_2(\mathbb{C}))$ with structure Hopf algebra H = U(1). We define Γ as the free left A-module with basis

$$\mathbf{e}^- = \delta \mathrm{d} eta - \mathbf{q}^{-1} eta \mathrm{d} \delta, \quad \mathbf{e}^+ = \mathbf{q} lpha \mathrm{d} \gamma - \mathbf{q}^2 \gamma \mathrm{d} lpha, \quad \mathbf{e}^0 = \delta \mathrm{d} lpha - \mathbf{q}^{-1} eta \mathrm{d} \gamma$$

with commutation relations

$$e^{\pm}f = q^{|f|}fe^{\pm}, \qquad e^{0}f = q^{2|f|}fe^{0},$$

where $f\in\{\alpha,\beta,\gamma,\delta\}$ and $|\alpha|=|\gamma|=-1,$ $|\beta|=|\delta|=1$ and differential

$$\begin{split} \mathrm{d} \alpha &= \alpha e^0 + q^{-1} \beta e^+, \quad \mathrm{d} \beta &= \alpha e^- - q^2 \beta e^0, \\ \mathrm{d} \gamma &= \gamma e^0 + q^{-1} \delta e^+, \quad \mathrm{d} \delta &= \gamma e^- - q^2 \delta e^0. \end{split}$$

 (Γ, d) is right *H*-covariant. On *B* we induce a FODC (Γ_B, d_B) via the injection $\iota: B \to A$.

On H we induce a bicovariant calculus (Γ_H, d_H) via the projection $\pi \colon A \to H$. Then, the vertical map

ver:
$$\Gamma \to A \Box \Gamma_H$$
, $\operatorname{ver}(\omega) = \omega_{-1} \otimes [\omega_0]$

is well-defined and $0 \to A \otimes_B \Gamma_B \to \Gamma \xrightarrow{\text{ver}} A \Box_H \Gamma_H \to 0$ is exact. Thus, (Γ, d) is a principal covariant calculus.

11/25

Remark

Exactness of $0 \to A \otimes_B \Gamma_B \to \Gamma \xrightarrow{\text{ver}} A \Box_H \Gamma_H \to 0$ is equivalent to the exactness of $0 \to A\Gamma_B \to \Gamma \xrightarrow{\text{ver}} A \otimes {}^{\text{coH}}\Gamma_H \to 0$ (= strong quantum principal bundle à la Brzeziński, Majid, Hajac).

Theorem (Aschieri-Fioresi-Latini-TW '21)

For any principal covariant calculus (Γ, d) on A with bicovariant FODC (Γ_H, d_H) on H we have a faithfully flat Hopf-Galois extension

$$\Omega_B^{\leqslant 1} = \left(\Omega_A^{\leqslant 1}\right)^{\operatorname{co}\Omega_H^{\leqslant 1}} \subseteq \Omega_A^{\leqslant 1}$$

such that δ_A is differentiable, i.e. such that the diagram commutes

$$\begin{array}{c} \Gamma & \xrightarrow{\delta_{A}^{1}} & \Gamma \otimes H \oplus A \otimes \Gamma_{H} \\ \stackrel{d}{\uparrow} & \stackrel{\uparrow d \otimes id_{H} + id_{A} \otimes d_{H}}{A} & \xrightarrow{\delta_{A}} & A \otimes H \end{array}$$

On the other hand, if the above is a faithfully flat Hopf-Galois extension and the diagram commutes (Γ , d) is a principal covariant calculus.

For the proof we use this lemma.

Lemma

Let (Γ, d) principal covariant calculus on (A, δ_A) (Γ_H, d_H) the corresponding bicovariant FODC on H. Then i.) $\Omega_H^{\leq 1} = H \oplus \Gamma_H$ is a graded Hopf algebra with $\Delta^1 = \Delta_{\Gamma_H} + \Gamma_H \Delta: \Gamma_H \to \Gamma_H \otimes H \oplus H \otimes \Gamma_H$ and $S^1: \Gamma_H \to \Gamma_H, \ \omega \mapsto -S(\omega_{-1})\omega_0S(\omega_1)$. ii.) $\Omega_A^{\leq 1} = A \oplus \Gamma$ is a graded right $\Omega_H^{\leq 1}$ -comodule algebra with $\delta_A^1 = \Delta_{\Gamma} + \text{ver}: \Gamma \to \Gamma \otimes H \oplus A \otimes \Gamma_H$. iii.) $\Omega_B^{\leq 1} = (\Omega_A^{\leq 1})^{\text{co}\Omega_H^{\leq 1}}$.

Proof.

For part iii.) we note that $\omega \otimes 1 = \delta^1_A(\omega) := \Delta_{\Gamma}(\omega) \oplus \operatorname{ver}(\omega)$ if and only if

$$\omega \in \underbrace{\Gamma_{B}}_{=\ker \operatorname{ver}} \cap \Gamma^{\operatorname{co} H} = \Gamma_B.$$

Quantum principal bundles

M topological space, H Hopf algebra.

 \mathcal{F} sheaf of right *H*-comodule algebras, i.e.

- $U \mapsto \mathcal{F}(U)$ gives a right *H*-comodule algebra \forall opens *U* of *M*, $\mathcal{F}(\emptyset) = \{0\}$
- for $U \subseteq V$ there is a morphism $r_{UV} \colon \mathcal{F}(V) \to \mathcal{F}(U)$ of right H-com. algebras
- compatibility $r_{UV} \circ r_{VW} = r_{UW}$ if $U \subseteq V \subseteq W$ and $r_{UU} = id$

Moreover, for any U and open cover $\{U_i\}$ of U we have

- if $a \in \mathcal{F}(U)$ s.t. $a|_{U_i} = 0$ for all i then a = 0
- if $\exists a_i \in \mathcal{F}(U_i) \forall i$ such that $a_i|_{U_i \cap U_i} = a_j|_{U_i \cap U_i}$ then $\exists a \in \mathcal{F}(U)$ s.t. $a|_{U_i} = a_i$

(M, \mathcal{O}_M) quantum ringed space, i.e. sheaf of (noncommutative) algebras.

Definition

We call a sheaf of right *H*-comodule algebras \mathcal{F} a quantum principal bundle (QPB) over (M, \mathcal{O}_M) if there is an open cover $\{U_i\}$ of M s.t.

•
$$\mathcal{F}(U_i)^{\mathrm{co}H} = \mathcal{O}_M(U_i)$$

• $\mathcal{F}(U_i)$ is a principal comodule algebra, i.e. $\mathcal{O}_M(U_i) \subseteq \mathcal{F}(U_i)$ is faithfully flat Hopf-Galois extension

Example $SL_q(2)$ over $\mathbb{C}\mathbf{P}^1$

Consider $A := \mathcal{O}_q(\mathrm{SL}_2(\mathbb{C}))$ and $H := \mathcal{O}_q(P) := \mathbb{C}_q[t, t^{-1}, p]/(tp - q^{-1}pt)$ on parabolic subgroup P with Hopf algebra quotient

$$\pi\colon A\to H,\qquad \begin{pmatrix} \alpha & \beta\\ \gamma & \delta \end{pmatrix}\mapsto \begin{pmatrix} t & p\\ 0 & t^{-1} \end{pmatrix}.$$

Consider the topology $\{\emptyset, U_1, U_2, U_{12}, \mathbb{C}\mathbf{P}^1\}$ on $\mathbb{C}\mathbf{P}^1$. We define the sheaves

$$\begin{split} \mathcal{F}(\emptyset) &:= \{0\}, \ \mathcal{F}(U_1) := A[\alpha^{-1}], \ \mathcal{F}(U_2) := A[\gamma^{-1}], \\ \mathcal{F}(U_{12}) &:= (A[\alpha^{-1}])[\gamma^{-1}], \ \mathcal{F}(\mathbb{C}\mathbf{P}^1) := A \end{split}$$

of right H-comodule algebras and

$$\mathcal{O}_{\mathbb{C}\mathbb{P}^1}(\emptyset) := \{0\}, \ \mathcal{O}_{\mathbb{C}\mathbb{P}^1}(U_1) := \mathbb{C}_q[\alpha^{-1}\gamma] = \mathbb{C}_q[u]$$
$$\mathcal{O}_{\mathbb{C}\mathbb{P}^1}(U_2) := A[\gamma^{-1}\alpha] = \mathbb{C}_q[v],$$
$$\mathcal{O}_{\mathbb{C}\mathbb{P}^1}(U_{12}) := \mathbb{C}_q[u, u^{-1}], \ \mathcal{O}_{\mathbb{C}\mathbb{P}^1}(\mathbb{C}\mathbb{P}^1) := \mathbb{C}_q$$

of algebras with restriction morphism $r_{U_{12}U_2}$: $v \mapsto u^{-1}$.

 $\Rightarrow \mathcal{F} \text{ is QPB over } \mathcal{O}_{\mathbb{C}\mathbb{P}^1} \text{ with cleaving maps } j_1 \colon t^\pm \mapsto \alpha^\pm, \ p \mapsto \beta \text{ and } j_2 \colon t^\pm \mapsto \gamma^\pm, \ p \mapsto \delta.$

Consider the following data

- G complex semisimple algebraic group
- *P* closed algebraic subgroup of *G* (usually parabolic subgroup)
- $\chi \colon P \to \mathbb{C}^{\times}$ character of P
- \mathcal{L} line bundle on G/P associated with χ with global sections

$$\mathcal{O}(G/P)_1 = \{f \colon G \to \mathbb{C} \mid f(gh) = \chi^{-1}(h)f(g)\}$$

• \mathcal{L} is ample and gives projective embedding of G/P.

Then $\mathcal{O}(G/P) := \sum_n \mathcal{O}(G/P)_n$ with $\mathcal{O}(G/P)_n = \{f : G \to \mathbb{C} \mid f(gh) = \chi^{-n}(h)f(g)\}.$

In Hopf algebra language: χ determines an element $s \in \mathcal{O}(G)$ such that

- $(\mathrm{id}\otimes\pi)\Delta(s)=s\otimes\pi(s)$
- $\pi(s^m) \neq \pi(s^n)$ for all $m \neq n$

where $\pi \colon \mathcal{O}(G) \to \mathcal{O}(P)$ and we obtain

$$\mathcal{O}(G/P)_n = \{f \in \mathcal{O}(G) \mid (\mathrm{id} \otimes \pi) \Delta(f) = f \otimes \pi(s^n)\}.$$

We sometimes call s a classical section of the line bundle \mathcal{L} on G/P.

16/25

Theorem (Ciccoli-Fioresi-Gavarini '08)

Given a quantum section of the line bundle \mathcal{L} on G/P, i.e. $s_q \in \mathcal{O}_q(G)$ such that

- $(\mathrm{id}\otimes\pi)\Delta(s_q)=s_q\otimes\pi(s_q)$
- $\lim_{q\to 1} s_q = s$, the classical section

then $\mathcal{O}_q(G/P) := \sum_n \mathcal{O}_q(G/P)_n$ with

$$\mathcal{O}_q(G/P)_n := \{f \in \mathcal{O}_q(G) \mid (\mathrm{id} \otimes \pi) \Delta(f) = f \otimes \pi(s_q^n)\}$$

is a projective homogeneous quantum variety. If we write $\Delta(s) = s^i \otimes s_i$, the set $\{s_i\}$ determines an open cover $\{U_i\}$ of M = G/P.

Define $U_I := U_{i_1} \cap \ldots \cap U_{i_r}$ for $I = (i_1, \ldots, i_r)$.

Theorem (Aschieri-Fioresi-Latini '21)

- $U_l \mapsto \mathcal{O}_M(U_l) := \mathbb{C}_q[s_{k_1}s_{i_1}^{-1}, \dots, s_{k_r}s_{i_r}^{-1}]$ for $1 \le k_j \le n$ defines a sheaf \mathcal{O}_M of algebras on M = G/P.
- **2** $U_l \mapsto \mathcal{F}_G(U_l) := \mathcal{O}_q(G)\{s_l^r \mid r \leq 0\}$ defines a sheaf \mathcal{F}_G of right H-comodule algebras.

For $G = SL_{n+1}(\mathbb{C})$ the above gives a QPB over $(\mathbb{C}\mathbf{P}^n, \mathcal{O}_{\mathbb{C}\mathbf{P}^n})$.

Ore Extension of Calculi

Let (A, δ_A) be a right *H*-comodule algebra and $\alpha \in A$ be an Ore element such that $\delta_A(\alpha) \in A \otimes H$ is invertible.

Then $A[\alpha^{-1}]$ is a right *H*-comodule algebra with $\delta_{A[\alpha^{-1}]}(\alpha^{-1}) = \delta_A(\alpha)^{-1}$.

Lemma

Consider a right H-covariant FODC (Γ, d) on A and let $\alpha \in A$ be as before. We define the $A[\alpha^{-1}]$ -bimodule

$$\Gamma_{\alpha} := A[\alpha^{-1}] \, \Gamma \, A[\alpha^{-1}] := A[\alpha^{-1}] \otimes_{A} \Gamma \otimes_{A} A[\alpha^{-1}]$$

and the k-linear map

$$d_{\alpha} \colon A[\alpha^{-1}] \to \Gamma_{\alpha}, \qquad d_{\alpha}(a) = \begin{cases} da & a \in A \\ -\alpha^{-1} d\alpha \alpha^{-1} & a = \alpha^{-1} \end{cases}$$

where we extend d_{α} to $A[\alpha^{-1}]$ by the Leibniz rule.

Then $(\Gamma_{\alpha}, d_{\alpha})$ is a right H-covariant FODC on $A[\alpha^{-1}]$.

Calculi on Sheaves of Comodule Algebras

Stalk of a sheaf: for $x \in M$

 $\mathcal{F}_x = \{(U, a) \mid x \in U \text{ open and } a \in \mathcal{F}(U)\} / \sim$

where $(U, a) \sim (V, a')$ iff $\exists W \subseteq U \cap V$ s.t. $a|_W = a'|_W$.

Definition

A right *H*-covariant FODC on sheaf \mathcal{F} of right *H*-comodule algebras is a sheaf Υ of right *H*-covariant \mathcal{F} -bimodules together with a morphism $d: \mathcal{F} \to \Upsilon$ of sheaves of right *H*-comodules, such that on the stalks

$${f 1} \,\,\,\mathrm{d}_x(\mathit{aa'}) = \mathrm{d}_x(\mathit{a})\mathit{a'} + \mathit{ad}_x(\mathit{a'})$$
 for all $\mathit{a}, \mathit{a'} \in \mathcal{F}_x$

$$\ 2 \ \ \, \Upsilon_x = \mathcal{F}_x \mathrm{d}_x \mathcal{F}_x$$

hold for all $x \in M$, where $d_x \colon \mathcal{F}_x \to \Upsilon_x$ is the induced map on the stalks.

Example

M algebraic variety, G algebraic group acting on M. Then

- the structure sheaf \mathcal{O}_M carries an $H = \mathcal{O}(G)$ -action.
- the sheaf Ω of Kähler differentials is a right *H*-covariant FODC.

Given (Υ,d) right H-covariant FODC on sheaf ${\cal F}$ we induce the following sheaves of ${\cal F}^{{\rm co}H}$ -bimodules

- Base forms $\Upsilon_M : U \mapsto \Upsilon_M(U) := \mathcal{F}^{\mathrm{co}H}(U) \mathrm{d}_U \mathcal{F}^{\mathrm{co}H}(U) = \mathcal{O}_M(U) \mathrm{d}_U \mathcal{O}_M(U)$
- Horizontal forms $\Upsilon^{\mathrm{hor}} \colon U \mapsto \mathcal{F}(U) \Upsilon_M(U)$
- Coinvariant forms $\Upsilon^{coH} = \ker \Delta_{\Upsilon}$, with sheaf morphism $\Delta_{\Upsilon} \colon \Upsilon \to \Upsilon \otimes H$

Lemma

 $(\Upsilon_M, d_M := d|_{\mathcal{O}_M})$ is a FODC on the sheaf \mathcal{O}_M .

As in the affine case one proves...

Theorem (Aschieri-Fioresi-Latini-TW '21)

For any right H-covariant FODC (Υ, d) on a QPB \mathcal{F} we have an isomorphism of sheaves of \mathcal{O}_M -bimodules $\Upsilon_M \cong \Upsilon^{hor} \cap \Upsilon^{coH}$.

Proof.

 $\mathcal{F}(U_i)$ principal comodule algebra for open cover $\{U_i\}$ implies \mathcal{F}_x principal comodule algebra $\forall x \in M$. Then use the affine results on stalks!

We construct a class of examples of calculi on quantum flag manifolds given the following data

- G complex semisimple algebraic group, P parabolic subgroup
- \$\mathcal{O}_q(G)\$, \$\mathcal{O}_q(P)\$ Hopf algebra quantizations
- $s_q \in \mathcal{O}_q(G)$ quantum section with corresponding sheaves \mathcal{F}_G and \mathcal{O}_M

Theorem (Aschieri-Fioresi-Latini-TW '21)

Let (Γ, d) be a right $\mathcal{O}_q(P)$ -covariant FODC on the Hopf algebra $\mathcal{O}_q(G)$. Then

- i.) there is a right $\mathcal{O}_q(P)$ -covariant FODC (Υ_G, d_G) on the sheaf \mathcal{F}_G .
- ii) (Υ_G, d_G) induces a FODC (Υ_M, d_M) on the sheaf \mathcal{O}_M .

iii.) if \mathcal{F}_G is a QPB we have $\Upsilon_M \cong \Upsilon_G^{\mathrm{hor}} \cap \Upsilon_G^{\mathrm{co}\mathcal{O}_q(P)}$.

Proof.

Recall that the topology of M is generated by a finite open cover. Consider $x \in M$ and the smallest open $U_x := \bigcap_{U_i \ni x} U_i$ containing x. Then $(\mathcal{F}_G)_x = \mathcal{F}(U_x)$. Apply the Ore extension of calculi...

Definition

Let \mathcal{F} be a QPB over (M, \mathcal{O}_M) . We say that a right *H*-covariant FODC (Υ, d) on \mathcal{F} and a bicovariant FODC (Γ_H, d_H) on *H* form a principal covariant calculus on \mathcal{F} , if there are exact sequences on all stalks, $x \in M$,

$$0 \to \mathcal{F}_x \otimes_{(\mathcal{O}_M)_x} (\Upsilon_M)_x \to \Upsilon_x \xrightarrow{\operatorname{ver}_x} \mathcal{F}_x \Box_H \Gamma_H \to 0.$$

Example $(A = \mathcal{O}_q(SL_2(\mathbb{C})), H = \mathcal{O}_q(P)$ parabolic subgroup P)

Let (Γ_A, d_A) be the 3-dimensional left covariant FODC on A, consider the quotient calculus (Γ_H, d_H) on H and the left H-covariant FODC $(\Upsilon_{SL_2}, d_{SL_2})$ on \mathcal{F}_{SL_2} . Then

- i.) $\Upsilon_{\mathrm{SL}_2}(U_I) = \Gamma_{A_I}$ is a free left $\mathcal{F}_{\mathrm{SL}_2}(U_I) = A_I$ -module generated by $\{\omega^0, \omega^1, \omega^2\}$.
- ii.) The base forms $(\Upsilon_{\mathbb{C}P^1}, d_{\mathbb{C}P^1})$ are determined by $\Gamma_{B_1} = \operatorname{span}_{B_1} \{\alpha^{-2}\omega^2\}$ and $\Gamma_{B_2} = \operatorname{span}_{B_2} \{\gamma^{-2}\omega^2\}$ as free left modules with commutation relations

$$(\mathrm{d}_1 u)u = q^2 u \mathrm{d}_1 u, \qquad (\mathrm{d}_2 v)v = q^{-2} v \mathrm{d}_2 v,$$

where $u = \gamma \alpha^{-1} \in B_1$ and $v = \alpha \gamma^{-1} \in B_2$.

- iii.) $0 \to A_I \otimes_{B_I} \Gamma_{B_I} \to \Gamma_{A_I} \xrightarrow{\text{ver}_I} A_I \Box_H \Gamma_H \to 0$ is exact for $I \in \{1, 2, 12\}$.
- iv.) $(\Upsilon_{SL_2}, d_{SL_2})$ is not principal covariant calculus, since (Γ_H, d_H) not bicovariant.

Example $\mathcal{O}_q(\mathrm{GL}_2(\mathbb{C}))$ over $\mathbb{C}\mathbf{P}^1$

The Ore extensions of $A = \mathcal{O}_q(\mathrm{GL}_2(\mathbb{C}))$ give rise to a QPB $\mathcal{F}_{\mathrm{GL}_2}$ on $(\mathbb{C}\mathbf{P}^1, \mathcal{O}_{\mathbb{C}\mathbf{P}^1})$:

$$\begin{aligned} \mathcal{F}_{\mathrm{GL}_2}(\emptyset) &= \{0\}, \quad \mathcal{F}_{\mathrm{GL}_2}(U_1) = \mathcal{A}[\alpha^{-1}], \quad \mathcal{F}_{\mathrm{GL}_2}(U_1) = \mathcal{A}[\gamma^{-1}], \\ \mathcal{F}_{\mathrm{GL}_2}(U_1 \cap U_2) &= \mathcal{A}[\alpha^{-1}, \gamma^{-1}], \quad \mathcal{F}_{\mathrm{GL}_2}(\mathbb{C}\mathsf{P}^1) = \mathcal{A}. \end{aligned}$$

Example

The Ore extension of the bicovariant FODC (Γ_{GL_2}, d_{GL_2}) on A is a principal covariant calculus ($\Upsilon_{GL_2}, d_{GL_2}$) on \mathcal{F}_{GL_2} .

Proof.

 $(\Gamma_{GL_2}, d_{GL_2})$ is 4-dim. free A-module with basis $\omega^1, \omega^2, \omega^3, \omega^4$. The quotient calculus (Γ_H, d_H) on $H = A/\langle \gamma \rangle$ is 3-dimensional $[\omega^1], [\omega^3], [\omega^4]$. $B_1 = \mathcal{F}(U_1)^{coH} = \mathbb{C}_q[\alpha^{-1}\gamma]$ with 1-dim. calculus generated by

$$d_1(u) = d_1(\alpha^{-1}\gamma) = -\alpha^{-2}\omega^2.$$

$$\begin{split} &\operatorname{ver}_1(\sum_{i=1}^4 a^i \omega^i) = \sum_{i=1}^4 a^i_0 \otimes a^i_1[\omega^i].\\ &\operatorname{So} 0 \to A_I \otimes_{B_I} \Gamma_{B_I} \to \Gamma_{A_I} \xrightarrow{\operatorname{ver}_I} A_I \Box_H \Gamma_H \to 0 \text{ is exact.} \end{split}$$

Future directions

 In the affine setting show under which conditions a (faithfully flat) Hopf-Galois extension B = A^{coH} ⊆ A extends to a (faithfully flat) Hopf-Galois extension of degree n > 1

$$\Omega^{\leqslant n}(B) = \Omega^{\leqslant n}(A)^{\operatorname{co}\Omega^{\leqslant n}(H)} \subseteq \Omega^{\leqslant n}(A).$$

The expectation is that no higher order exact sequences are needed since Ω^{\bullet} is "determined" in degree 1.

- Consider the QPB $\mathcal{F}_{\mathrm{SL}_{n+1}}$ over $(\mathbb{C}\mathbf{P}^n, \mathcal{O}_{\mathbb{C}\mathbf{P}^n})$ based on $\mathcal{O}_q(\mathrm{SL}_{n+1}(\mathbb{C}))$.
- ...and higher Grassmannians

Can we extend some of the technology to graph algebras?

- Differential calculi on graph algebras (in terms of graphs)?
- Ore extension of graph algebras?
- Sheaves of graph algebras?

...or maybe we can get some insights on QPBs from the theory of graph algebras.

ASCHIERI, P., FIORESI, R., LATINI, E., WEBER, T.: Differential Calculi on Quantum Principal Bundles over Projective Bases. arXiv:2110.03481.

ASCHIERI, P., FIORESI, R., LATINI, E.: *Quantum Principal Bundles on Projective Bases*, Comm. Math. Phys. 382 (2021) 1691–1724.

SCHAUENBURG, P.: Hopf-Galois extensions of graded algebras: The faithfully flat case, Commun. Algebra 24 10 (1996) 3099-3116.

SCHNEIDER, H.J.: Principal Homogeneous Spaces for arbitrary Hopf algebras, Isr. J. Math. 72 (1990).

WORONOWICZ, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. 122 1 (1989):125-170.

Thank you for your attention!