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Plan of talk: 1. Noncommutative differential geometry

(H, A, €, S) Hopf algebra
A right H-comodule algebra

"Problem": A differential calculus Q°®(A) on A is not unique! Which one to choose?

1st main question: Given a (faithfully flat) Hopf-Galois extension B := A®" C A
can we find noncommutative differential calculi Q®(A), Q®(H) such that

Q.(B) — Q.(A)cuﬂ'(H) C Q.(A)
is a Hopf-Galois extension of graded algebras?

We give conditions for this to holds as first order differential calculi:
~~ Principal covariant calculi

0= A Q(B) = Q1(A) =5 AOLQY(H) =0
N N, e

Q) (4) =01,(A)
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Plan of talk: 2. Quantum principal bundles and sheaves

In noncommutative differential geometry there is (usually) no underlying topological
space. Algebras and modules are understood as global functions or sections.

2nd main question: How to quantize a projective space, like CP! = U,.,un U Usouth
which has only trivial global functions but non-trivial local data?

Quantum ringed space (CP, Ocp1) with Ogp1(CP) = C, Ogp1(U1) = Clx1/xo],
Ocpl(UQ) = C[Xo/xl], Ocp1(U1 N U2) = C[X()/Xl,xl/XO].

e Study sheaves F of H-comodule algebras which are locally Hopf-Galois
extensions.

e Define differential calculi on F as sheaves which are locally (principal covariant)
calculi.

e Explicit construction based on O4(G) with structure Hopf algebra Oq4(P) for G
complex semisimple Lie group and P a parabolic subgroup.
~» Ore extension!

o Examples feature graph algebras, like O4(SUz), Oq(S?), O(CPY),...

Open questions: Are differential calculi on graph algebras determined by graphs?
Is the theory of QPBs (sometimes) better understood in graph language?
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Hopf-Galois Extensions

Let k be a field.

(H, A, €, S) Hopf algebra with coproduct A: H — H ® H, counit e: H — k and
antipode S: H — H.
Sweedler’s notation A(h) = h1 ® hy.

(A, d4) right H-comodule algebra with coaction §4: A — A® H.
In particular §4 is algebra morphism da(aa’) = da(a)da(a’), 6a(la) =14 ® 1p.

Sweedler’s notation d4(a) = ap ® ax.

B:=A“":.={ac A|ds(a) =a®1}

Definition (Kreimer-Takeuchi '81)

B C A'is called a Hopf-Galois extension if the canonical map
X: ARA—A®H, a®Ba'|—>aa6®a£

is a bijection.
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i.) If A= H then k = A®" C A is Hopf-Galois extension with
X"Hh® H) = hS(H,) @ .
ii.) m: P — M principal G-bundle, A= C>(P), H=C>(G).
Right G-action r: P X G — P induces right coaction 4 :==r*: A —> A®Q H.
B := A“H = C>®(P/G) = C>(M)
¢: PxG— PxyP, (p,g)— (p,r(p,g)) induces x := ¢* and x is bijection if
r is free and transitive on fibers.

iii.) A= Oq4(SL2(C)) free algebra generated by «, 8, ,d modulo

af=q B, oay=q lya, BI=q 6B, ~5=q '6v,
By=18, al—da=(q7'—q)By, ad—q 'By=1

is Hopf algebra with A (: ?) = (: g) ® (3 ?)

Hopf algebra quotient 7: A — H = O(U(1)), (3 g) — (é tgl)'

Then A is a right H-comodule algebra with 4 = (id®@ 7)o A: A— A® H
and B = A“H = 04(S?) is the Podle$ sphere.

One can show that B C A is faithfully flat Hopf-Galois extension.
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A real form of SLq(2,C) is SUg(2) and the QPB
04(S?) = O,(5U(2)) )

corresponds to the graph algebras

e €2 €1
€12

o—>0 [ J

vi V2 vi

e— OO0 —> 0
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Principal comodule algebras

Definition

(A,d,) is called a principal comodule algebra if
i.) B:= A®H C Ais a Hopf-Galois extension and

ii.) Ais a faithfully flat right (or left) B-module, i.e. pM — sMH, N— AR N
is an exact functor which reflects exactness.

Functor of coinvariants 4M" — g M, M — M«H.

Theorem (Schneider '90)

The following are equivalent.
i.) (A,da) is a principal comodule algebra.
i.) pM = MM are equivalent categories, namely
(AR N)*H =N,  AggMH =M.

i.) Og4(SL(C)) with Hopf algebra H = O(U(1)) as before.

ii.) Every crossed product algebra B#4,H, where 0: H® H — B is a 2-cocycle with
values in B.
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First Order Differential Calculi

(A, 84) right H-comodule algebra.

Definition (Woronowicz '89)

We call (T, d) a first order differential calculus (FODC) on A, if
@ T is A-bimodule.
Q d: A—T isk-linear s.t.

d(ab) = d(a)b + ad(b) (Leibniz rule)
holds for all a, b € A.
© I = AdA := span,{ad(b) | a, b € A}. (Surjectivity)

We call a FODC (I, d) on A right H-covariant if ' € AMX and d is right H-colinear.

i.) A=%°(M), T =T*°(T*M), d: A— T de Rham differential
df|y = %dxi in local chart (U, x). Coaction dual to Lie group action G O M.

ii.) The universal FODC ', = kerpa, du(a) =1® a—a® 1.
Every FODC on A is a quotient of (Iy,dy).

€
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Base forms and horizontal forms

(A, 84) principal comodule algebra, i.e. faithfully flat H-Galois extension of B = A
(T, d) right H-covariant FODC on A, in particular, for a,a’ € A, w e T

Ar(a-w- o) = () Ar(w)da(2).
Base forms: g := BdB C T with differential dg :=d|g: B— g

Horizontal forms: her .= Arg

Proposition

g = rhur N [eoH

Clearly 'g C reH and thus, by the flatness of A,

ARp FB—>A®BI'“""’% r
is an injection =— A®pg g = Al'g. Then

= (A ®B rB)mH o (ArB)coH — rhor a [eoH
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Principal calculi and vertical forms

(A, d4) principal comodule algebra.

Definition

A right H-covariant FODC (I',d) on A and a bicovariant FODC (I'y,dy) on H are
called a principal covariant calculus if ver is well-defined and we have exact sequence

0+ A®plp — T~ AOuly — 0.

Above AUyl y := Span]k{a@wH cEARMY ‘ 6A(a) Quwy=a® rHA(wH)} is the
cotensor product over H and

ver: I — AOQ¥y, ada’ — apal ® ardyal

the vertical map. Warning: ver might not be well-defined!

Consider the principal comodule algebra B := 04(S?) C A := Oq(SL2(C)) with
structure Hopf algebra H = O(U(1)).

e The 3-dim. right covariant FODC on A is a principal covariant calculus.

e The 4-dim. bicovariant FODC on A is not a principal covariant calculus.
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Example (The g-monopole bundle)

Consider the principal comodule algebra B := 04(S?) C A := Og(SL2(C)) with
structure Hopf algebra H = U(1). We define I as the free left A-module with basis

e~ =48dB — g 1B8ds, et = qgady — ¢®yde, €° = dda— g Bdy
with commutation relations
etf = qlflfej[7 f = qszeo,

where f € {a, 8,7,6} and |a| = |y| = —1, |B8] = |§] = 1 and differential

da = ae® + g 1Bet, dB =ae” — g?B€°,

dy = ve® + g7 18et, db =~ye — ¢?6€°.
(T, d) is right H-covariant. On B we induce a FODC (I'g, dg) via the injection
v B— A
On H we induce a bicovariant calculus (I'y,dy) via the projection w: A — H. Then,
the vertical map

ver: [ — AOly, ver(w) = w_1 ® [wo]

is well-defined and 0 -+ A®p Mg — I = AOyly — 0 is exact. Thus, (I,d) is a
principal covariant calculus.
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Exactness of 0 - A®pg g — I 5 AOyly — 0 is equivalent to the exactness of
ver

0— Alrg - T X5 A® “HTy — 0 (= strong quantum principal bundle 3 Ia
Brzeziriski, Majid, Hajac).

.

Theorem (Aschieri-Fioresi-Latini-TW '21)

For any principal covariant calculus (I',d) on A with bicovariant FODC (T'y,dy) on H
we have a faithfully flat Hopf-Galois extension

<1
<1 <1y <1
oSl — (o H CQ
5 = (2%) = 2

such that 4 is differentiable, i.e. such that the diagram commutes

61
rN—2 STQHOARQIY

dT Wh®wH+MA®dH
A% L A®H

On the other hand, if the above is a faithfully flat Hopf-Galois extension and the
diagram commutes (I, d) is a principal covariant calculus.

¢
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For the proof we use this lemma.

Let (T, d) principal covariant calculus on (A, da)
(T, dy) the corresponding bicovariant FODC on H. Then

i.) QEI = H® Ty is a graded Hopf algebra with
Al=Ar, +r,A: Ty =2 ThOHSH® MY
and S1: Ty — Ty, w— —S(w_1)woS(w1).
ii.) Qfl = AT is a graded right Qf,l—comodule algebra with
S =Ar+ver:T > TOHB®ARy.

<1
i) Q§' = (@5« .

For part iii.) we note that w ® 1 = &4(w) := Ar(w) & ver(w) if and only if

A

we [ ared =rg.

=ker ver

.
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Quantum principal bundles

M topological space, H Hopf algebra.
F sheaf of right H-comodule algebras, i.e.

e U+ F(U) gives a right H-comodule algebra V opens U of M, F(0) = {0}
e for U C V there is a morphism ryy : F(V) — F(U) of right H-com. algebras
e compatibility ryy o ryw = ryw if UC V C W and ryy = id
Moreover, for any U and open cover {U;} of U we have
o ifac F(U)s.t. aly, =0 forall i then a=0
e if 3 a; € F(U;) V i such that aj|y,ny; = ajlyny; then 3 a € F(U) sit. aly, = a

(M, Op) quantum ringed space, i.e. sheaf of (noncommutative) algebras.

Definition

We call a sheaf of right H-comodule algebras F a quantum principal bundle (QPB)
over (M, Op) if there is an open cover {U;} of M s.t.
o F(U)*" = Om(Ur)
e F(U;) is a principal comodule algebra, i.e. Opm(Uj) C F(U;) is faithfully flat
Hopf-Galois extension
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Example SL,(2) over CP?

Consider A := O4(SL2(C)) and H := Oq(P) := Cq[t, t %, p]/(tp — g 1pt)
on parabolic subgroup P with Hopf algebra quotient

) a B t p
m A— H, (7 6)'_)(0 tfl)'

Consider the topology {(, U1, Uz, U1z, CP1} on CP1.
We define the sheaves

F(0) := {0}, F(lh) := Ala '], F(U2) := Aly 1],
F(Ur2) == (Al DIy, F(CPY):=A

of right H-comodule algebras and

Ocpi (0) := {0}, Ocp1(Ur) := Cqla™"] = Cqlu],
Ocp1(U2) := Aly~ta] = Cqlv],
Ocp1(Ur2) := Cqu, u™1], Ocp1(CP?) :=Cq

of algebras with restriction morphism ry,y,: v — u~l.

= F is QPB over Ogp1 with cleaving maps ji: tf — at, p— B and

i tf AT p— 4.
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Consider the following data

G complex semisimple algebraic group

P closed algebraic subgroup of G (usually parabolic subgroup)

e x: P — CX character of P

e L line bundle on G/P associated with x with global sections
O(G/P)1 ={f: G— C | f(gh) = x"(h)f(g)}
e L is ample and gives projective embedding of G/P.

Then O(G/P) :=3,0(G/P), with O(G/P), = {f: G — C | f(gh) = x~"(h)f(g)}.

In Hopf algebra language: x determines an element s € O(G) such that
o (id®m)A(s) =s®n(s)
o w(s™) # w(s") forall m#n

where m: O(G) — O(P) and we obtain

O(G/P)n ={f € O(G) | ((d® 7)A(f) = f @ m(s")}.

We sometimes call s a classical section of the line bundle £ on G/P.
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Theorem (Ciccoli-Fioresi-Gavarini '08)

Given a quantum section of the line bundle £ on G/P, i.e. sq € O4(G) such that
o (id®m)A(sq) = sq ® 7(sq)
o limg_,15q = s, the classical section

then Oq(G/P) := >, Oq(G/P)n with

Og(G/P)n = {f € 04(G) | (id® ™)A(f) = f @ m(sl)}

is a projective homogeneous quantum variety. If we write A(s) = s' ® s;, the set {s;}
determines an open cover {U;} of M = G/P.

Define U/ = U,‘1 n...N U,'r for | = (1'17 .. .,I’r).

Theorem (Aschieri-Fioresi-Latini '21)

Q U~ oy := Cq[sklsizl, .. ,sk,sijl] for 1 < kj < n defines a sheaf Oy of
algebras on M = G/P.

@ U — Fs(U)) :== Oq(G){s] | r <0} defines a sheaf F¢ of right H-comodule
algebras.

Q 70" oy

For G = SLp+1(C) the above gives a QPB over (CP", Ocpn).
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Ore Extension of Calculi

Let (A,d4) be a right H-comodule algebra and o € A be an Ore element such that
da(a) € A® H is invertible.

Then A[a~1] is a right H-comodule algebra with 5A[(rl](a_1) = a(a)~ L.

Consider a right H-covariant FODC (I',d) on A and let oo € A be as before. We define
the Ala—1]-bimodule

Mo = Ala YT Ala™!] := Ala™ ] @a T @ Ala™]

and the k-linear map

da acA

—aldaa! a=a?

do: Ala™ = Ta, da(a) = {

where we extend do to A[a™1] by the Leibniz rule.

Then (Ta,da) is a right H-covariant FODC on Ala1].
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Calculi on Sheaves of Comodule Algebras

Stalk of a sheaf: for x € M
x ={(U,a) | x € U open and a € F(U)}/ ~
where (U, a) ~ (V,a') iff AW C UNV st alw = a'|w.

Definition

A right H-covariant FODC on sheaf F of right H-comodule algebras is a sheaf T of
right H-covariant F-bimodules together with a morphism d: F — T of sheaves of
right H-comodules, such that on the stalks

@ d«(aa’) = dx(a)a’ + adx(a’) for all a,a’ € Fx
9 Tx = -dex]:x
hold for all x € M, where dx: Fx — Tx is the induced map on the stalks.

.

M algebraic variety, G algebraic group acting on M. Then
e the structure sheaf Oy carries an H = O(G)-action.
o the sheaf Q of Kahler differentials is a right H-covariant FODC.
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Given (T, d) right H-covariant FODC on sheaf F we induce the following sheaves of
FH_bimodules

e Base forms Ty : U Ty (U) := FH(U)dyFeH (U) = Opn(U)dyOm(U)
e Horizontal forms Thr: U s F(U)Ty(U)
e Coinvariant forms T¢H = ker A+, with sheaf morphism Ay: T - T ® H

(Twm,dm :=d|o,,) is a FODC on the sheaf Oy.

As in the affine case one proves...

Theorem (Aschieri-Fioresi-Latini-TW '21)

For any right H-covariant FODC (T,d) on a QPB F we have an isomorphism of
sheaves of Oy-bimodules Ty, 22 Thor o peoH

F(U;) principal comodule algebra for open cover {U;} implies Fx principal comodule
algebra V x € M. Then use the affine results on stalks! O
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We construct a class of examples of calculi on quantum flag manifolds given the
following data

e G complex semisimple algebraic group, P parabolic subgroup
o O4(G),Oq(P) Hopf algebra quantizations
o s; € O4(G) quantum section with corresponding sheaves Fg and Oy

Theorem (Aschieri-Fioresi-Latini-TW '21)

Let (T, d) be a right O4(P)-covariant FODC on the Hopf algebra Oq(G). Then
i.) there is a right Oq(P)-covariant FODC (T, dg) on the sheaf Fg.
i) (Tg,dg) induces a FODC (T p,dp) on the sheaf Oy.

ii.) if Fg is a QPB we have Ty = T}g’r n Tcgoq(P).

.

Recall that the topology of M is generated by a finite open cover. Consider x € M
and the smallest open Uy := nU,-ax U; containing x. Then (Fg)x = F(Ux). Apply the
Ore extension of calculi... O

v
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Definition

Let F be a QPB over (M, Oy). We say that a right H-covariant FODC (7T, d) on F
and a bicovariant FODC (I'y, dy) on H form a principal covariant calculus on F, if
there are exact sequences on all stalks, x € M,

0 = Fx ®op)e (TM)x = T == F Oyl — 0.

Example (A = Oq(SL2(C)), H = Oq(P) parabolic subgroup P)

Let (Fa,da) be the 3-dimensional left covariant FODC on A, consider the quotient
calculus (T'y,dy) on H and the left H-covariant FODC (Tg,,dg,) on Fgp,. Then

i.) T, (Uj) =T, is a free left Fg, (U;) = A-module generated by {w?, w?, w?}.
ii.) The base forms (Tcp1,dcp1) are determined by 'g; = spang, {a=2w?} and
g, = spang, {y72w?} as free left modules with commutation relations
(diw)u = q2udyu, (d2v)v = g 2vdyv,
where u =vya=1 € By and v =ay~1 € B,.
ii.) 0— A ®g, g —Ta — AOuTY — 0 is exact for | € {1,2,12}.

iv.) (Tsr,,dsi,) is not principal covariant calculus, since (I'y,dy) not bicovariant.

v
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Example O,(GLy(C)) over CP?

The Ore extensions of A = Oq(GL2(C)) give rise to a QPB Fy,, on (CP!, Ocp1):

Far, (0) = {0}, Far,(U1) = Ala™],  Far,(Ur) = Ay,
Fa,(Uin U2) = Ale™ !, y71], Fa,(CPY) = A

The Ore extension of the bicovariant FODC (I, ,dgr,) on A is a principal covariant

caleulus (T, ,dar,) on Far, -
4

(Fgrys dar,) is 4-dim. free A-module with basis wl, w?, w3, wh.

The quotient calculus (I, dy) on H = A/(v) is 3-dimensional [w!], [w3], [w*].
By = F(U1)*" = Cq[a=1q] with 1-dim. calculus generated by

di(v) = di(a™1y) = —a—2w2.

Verl(Z?:l aw') = ?:1 36 ® aj[w'].
very

So 0 — A ®p, FB, — FA, — A0yl — 0 is exact. O

.
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Future directions

e In the affine setting show under which conditions a (faithfully flat) Hopf-Galois
extension B = A®M C A extends to a (faithfully flat) Hopf-Galois extension of
degree n > 1

an(B) — an(A)(:oan(H) C an(A)
The expectation is that no higher order exact sequences are needed since Q° is
"determined" in degree 1.
o Consider the QPB Fgy, ., over (CP", Ocpn) based on Og(SLn+1(C)).

e ...and higher Grassmannians

Can we extend some of the technology to graph algebras?
e Differential calculi on graph algebras (in terms of graphs)?
e Ore extension of graph algebras?
e Sheaves of graph algebras?

...or maybe we can get some insights on QPBs from the theory of graph algebras.
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