L'évy-Khintchine decomposition for $SU_q(N)$

Anna Wysoczańska-Kula Uniwersytet Wrocławski

joint work with: Uwe Franz, Martin Lindsay, Michael Skeide

Graph Algebras, Będlewo 2023

Let A be a unital *-algebra with a character ε .

Definition

A linear mapping $\psi: A
ightarrow \mathbb{C}$ is called **generating functional** if

• $\psi(1_A) = 0$,

•
$$\psi(a^*)=\overline{\psi(a)}$$
 for $a\in A$,

•
$$\psi(a^*a) \geq 0$$
 for $a \in \ker arepsilon$.

A generating functional ψ is called **Gaussian** if $\psi(abc) = 0$ for any $a, b, c \in \ker \varepsilon$.

Question 1: Whan are all possible generating functionals on a given (A, ε) ?

Question 2: Is it always possible to decompose a given generating functional ψ into $\psi = \psi_G + \psi_R$, where ψ_G and ψ_R are generating functionals and ψ_G is maximally Gaussian?

Motivations: Lévy process with values in \mathbb{R}^n

Let (Ω, \mathcal{F}, P) be a probability space.

Definition

A family $(X_t)_{t\geq 0}$ of \mathcal{F} -mesurable functions $X_t: \Omega \to \mathbb{R}^n$ is called Lévy process if

- $X_0 = 0$ *P*-almost everywhere,
- the increments are stationary: the law of $X_t X_s$ depends only on t-s
- the increments $(X_{t_{j+1}} X_{t_j})_{j=1,...,n}$ are independent whenever $0 \le t_1 < t_2 < \ldots < t_{n+1}$,
- (stochastic continuity) X_t converges in probability to X_0 when $t \searrow 0$, i.e. $\Leftrightarrow P(|X_t| > a) \rightarrow 0$ as $t \searrow 0$.

Examples: Gaussian process (Brownian motion), Poisson process, compound Poisson, etc.

Lévy process with values in \mathbb{R} : examples

 ${\rm FIGURE}$ 2.4. Examples of Lévy processes: linear drift (left) and Brownian motion.

FIGURE 2.5. Examples of Lévy processes: compound Poisson process (left) and Lévy jump-diffusion.

Source: A. Papapantoleon, An Introduction to Lévy Processes with Applications in Finance.

Anna Wysoczańska-Kula

Lévy-Khintchine Formula (1934/1937)

 $X=(X_t)_t$ is a Lévy process on \mathbb{R}^n iff the characteristic function

$$\phi_X(u) := \int_{\mathbb{R}^n} e^{i\langle u, x \rangle} \mu_{X_1}(dx) = e^{\eta_X(u)},$$

where

$$\eta_X(u) = \mathrm{i}\langle b, u \rangle - \frac{1}{2} \langle u, \sigma u \rangle + \int_{\mathbb{R}^n} (e^{\mathrm{i}\langle u, y \rangle} - 1 - \mathrm{i}\langle u, y \rangle \mathbf{1}_{|y| \le 1}) \nu(dy)$$

for some $b \in \mathbb{R}^n$, $\sigma \in M(n, n)$ positive-definite and a 'Lévy measure' ν on \mathbb{R}^n .

Note: η_X is a sum of η_G (for a Gaussian process) and a limit of η_J (for compound Poisson processes).

In order to generalize the notion of Lévy process to processes with values in S, i.e. $(X_t : \Omega \to S)_{t \ge 0}$, we need:

- a neutral element $0 \in S$ (since $X_0 = 0$);
- a composition rule and inverse elements (for the notion of increments $X_t X_s$ or, multiplicatively, $X_s^{-1}X_t$);

We need a group structure!

Classification

Let G be a Lie group, \mathfrak{g} – the related Lie algebra.

- (X_1,\ldots,X_n) basis in \mathfrak{g}
- (e_1,\ldots,e^n) are canonical coordinates in a neighborhood of e_i
- (X_1^L, \ldots, X_n^L) derivations in the direction related to X_i

Hunt's Formula (1956)

Lévy process on G are in one-to-one correspondence with the generating functionals L of the form

$$Lf(x) = \sum_{i} b_{i}X_{i}^{L}f(x) + \sum_{i,j} a_{ij}X_{i}^{L}X_{j}^{L}f(x)$$
$$+ \int_{G \setminus \{e\}} \left[f(xy) - f(x) - \sum_{i} e^{i}(x)X_{i}^{L}(y) \right] \nu(dy)$$

for some $b \in \mathbb{R}^n$, $a = (a_{ij})_{i,j} \in M_n(\mathbb{R})$ positive definite, symmetric and a Lévy measure ν on $G \setminus \{e\}$. The domain of L contains $C_c^{\infty}(G)$ -functions.

A noncommutative generalization of Lévy processes

Let $(\mathcal{A}, \Delta, \varepsilon)$ be a *-bialgebra, (\mathcal{B}, Φ) – a nc probability space.

Definition (Accardi, Schürmann, von Waldenfels'88)

A Lévy process on \mathcal{A} is a quantum stochastic process, that is a family of a *-homomorphisms $(j_{st} : \mathcal{A} \to \mathcal{B})_{t \ge s \ge 0}$, which satisfies:

•
$$j_{tt} = \varepsilon 1_{\mathcal{A}};$$

- the increments (j_{st}) are stationary, i.e. $\varphi_{st} = \Phi \circ j_{st} \sim t s$,
- the increments (j_{st}) are (tensor) independent: for nonoverlapping intervals I_k = [s_k, t_k] (with j_k := j_{sk}, t_k) and all b_j ∈ A we have
 (i) [j_k(b₁), j_l(b₂)] = 0 for k ≠ l;
 (ii) Φ(j₁(b₁)...j_n(b_n)) = Φ(j₁(b₁))...Φ(j_n(b_n));
- (increment property) for all $0 \le r \le s \le t$

$$j_{rs} \star j_{st} = j_{rt},$$

where $j_1 \star j_2 := m_{\mathcal{B}} \circ (j_1 \otimes j_2) \circ \Delta;$

• (weak continuity) j_{st} converges to j_{ss} in distribution for $t \searrow s$.

???

• Given a Lévy process $(j_{st}:\mathcal{A}
ightarrow\mathcal{B})_{0\leq s< t}$, define

$$\varphi_t = \Phi \circ j_{0t} = \Phi \circ j_{s,s+t}.$$

Then $(\varphi_t)_{t\geq 0}$ is a semigroup of states on \mathcal{A} , i.e. for $a \in \mathcal{A}$, $s, t \geq 0$ • $\varphi_t(a^*a) > 0$, $\varphi_t(1_A) = 1$,

• $\varphi_s \star \varphi_t = \varphi_{s+t}$, $\lim_{t \searrow 0} \varphi_t(a) = \varphi_0(a) = \varepsilon(a)$.

• For the semigroup of states there exists an infinitesimal generator

$$\psi = \frac{d}{dt} \mid_{t=0} \varphi_t \; .$$

• Given a Lévy process $(j_{st}:\mathcal{A}
ightarrow\mathcal{B})_{0\leq s< t},$ define

$$\varphi_t = \Phi \circ j_{0t} = \Phi \circ j_{s,s+t}.$$

Then $(\varphi_t)_{t\geq 0}$ is a semigroup of states on \mathcal{A} , i.e. for $a \in \mathcal{A}$, $s, t \geq 0$ • $\varphi_t(a^*a) > 0$, $\varphi_t(1_A) = 1$,

- $\varphi_s \star \varphi_t = \varphi_{s+t}$, $\lim_{t \searrow 0} \varphi_t(a) = \varphi_0(a) = \varepsilon(a)$.
- For the semigroup of states there exists an infinitesimal generator

$$\psi = \frac{d}{dt} \mid_{t=0} \varphi_t \; .$$

Theorem

A linear mapping $\psi : \mathcal{A} \to \mathbb{C}$ is an infinitesimal generator of a semigroup of states iff it is a generating fuctional:

$$\bullet \ \psi(1) = 0, \quad \bullet \ \psi(a^*) = \overline{\psi(a)} \quad \bullet \ \psi(a^*a) \geq 0 \ (a \in \ker \varepsilon).$$

For the proof set $\varphi_t = \exp^*(t\psi) = \sum_{n=0}^{\infty} \frac{t^n \psi^{\star n}}{n!}$.

For a generating functional ψ we can get via the GNS-type construction:

Schürmann triples (π, η, ψ)

- $\pi : \mathcal{A} \to L^{\#}(H)$ is a **unital** *-representation of \mathcal{A} on some pre-Hilbert space H;
- $\eta:\mathcal{A}
 ightarrow H$ is a linear mapping satisfying

$$\eta(ab) = \pi(a)\eta(b) + \eta(a)\varepsilon(b)$$

(1- π - ε -cocycle);

• $\psi:\mathcal{A} \to \mathbb{C}$ is a linear hermitian functional satisfying

$$\psi(ab) = \varepsilon(a)\psi(b) + \langle \eta(a^*), \eta(b) \rangle + \psi(a)\varepsilon(b)$$

 $-\partial \psi = \eta \cup \eta$).

Set $\langle a, b \rangle_{\psi} := \psi ((a - \varepsilon(a)1)^* (b - \varepsilon(b)1))$ and $H := A / \{a : \langle a, a \rangle_{\psi} = 0\}$. Moreover take $\eta(a) := [a]$ and $\pi(a)\eta(b) := \eta(a(b - \varepsilon(b)))$.

We have one-to-one correspondences between the following objects:

$$\begin{array}{c} \mathsf{L\acute{e}vy\ processes\ }(j_{st})_{t>s\geq 0}\ \text{on}\ \mathcal{A} \\ \uparrow \\ (\mathsf{Weak-*})\ \mathsf{cont.\ convolutions\ semigroups\ of\ states\ }(\varphi_t)_{t\geq 0}\ \text{on}\ \mathcal{A} \\ \uparrow \\ \mathsf{Generating\ functionals\ }\psi:\mathcal{A}\to\mathbb{C} \\ \uparrow \\ \mathbf{Surjective}^1\ \mathbf{Sch\"{u}rmann\ triples\ }(\pi,\eta,\psi) \end{array}$$

¹i.e. surjective:
$$\eta(\mathcal{B}) = H$$
 or $\overline{\eta(\mathcal{B})} = H$

We have one-to-one correspondences between the following objects:

$$\begin{array}{c} \mathsf{L\acute{e}vy\ processes\ }(j_{st})_{t>s\geq 0}\ \text{on}\ \mathcal{A} \\ \uparrow \\ (\mathsf{Weak-*})\ \mathsf{cont.\ convolutions\ semigroups\ of\ states\ }(\varphi_t)_{t\geq 0}\ \text{on}\ \mathcal{A} \\ \uparrow \\ \mathsf{Generating\ functionals\ }\psi:\mathcal{A}\to\mathbb{C} \\ \uparrow \\ \mathbf{Surjective^1\ Schürmann\ triples\ }(\pi,\eta,\psi) \end{array}$$

Remarks

- If we want to describe all Lévy processes on a given A, it is enough to describe Schürmann triples on it.
- For considering generating functionals and Schürmann triples, augmented algebra (A, ε) is enough. To recover the Lévy process, the comultiplication is necessary.

¹i.e. surjective:
$$\eta(\mathcal{B}) = H$$
 or $\overline{\eta(\mathcal{B})} = H$

Lévy processes \leftrightarrow Schürmann triple (π, η, ψ)

Procedure for describing all LPs

- Find all *-representations π of \mathcal{A} (on some H).
- 2 Describe all linear mappings η satisfying $\eta(ab) = \pi(a)\eta(b) + \eta(a)\varepsilon(b)$.
- Solution Check whether for (π, η) there exists ψ such that (π, η, ψ) is a Schürmann triple. If so, we say that η is completable.
- Sind <u>all</u> ψ's associated to a given (π, η): if there exists one, then all others are of the form ψ+drift term(*)

(*) A drift is a generating functional vanishing on $(\ker \varepsilon)^2$, or equivalently having $\eta = 0$.

Apart from (1), the most difficult part is (3). What can go wrong?

What can go wrong?

• Given a representation π and a cocycle η it is necessary to define

$$\psi(1_{\mathcal{A}}) = 0, \quad \psi(ab) = \langle \eta(a^*), \eta(b) \rangle, \ a, b \in \ker \varepsilon.$$

Then it it normalized, cond. positive and hermitian on $(\ker \varepsilon)^2$. • Potential conflicts: $ab = cd \Rightarrow \langle \eta(a^*), \eta(b) \rangle = \langle \eta(c^*), \eta(d) \rangle$

What can go wrong?

ullet Given a representation π and a cocycle η it is necessary to define

$$\psi(1_{\mathcal{A}}) = 0, \quad \psi(ab) = \langle \eta(a^*), \eta(b) \rangle, \ a, b \in \ker \varepsilon.$$

Then it it normalized, cond. positive and hermitian on $(\ker \varepsilon)^2$. • Potential conflicts: $ab = cd \Rightarrow \langle \eta(a^*), \eta(b) \rangle = \langle \eta(c^*), \eta(d) \rangle$

Example of a pair (π, η) without generating functional

• \mathcal{A} : free unital <u>commutative</u> *-algebra generated by x,

• counit :
$$\varepsilon(1) = 1$$
, $\varepsilon(x) = 0$.

For $z, w \in \mathbb{C}$ set

$$\eta(x) = z, \quad \eta(x^*) = w$$

and extend to a ε - ε -cocyle.

If $|z| \neq |w|$, then (ε, η) does not admit generating functional, since

$$|z|^2 = \psi(x^*x) = \psi(xx^*) = |w|^2.$$

Inner derivations are always completable

Let π be a representation of \mathcal{A} on B(H) and $h \in H$ a vector. Define

$$\eta_{\pi,h}(a) = \pi(a)h - \varepsilon(a)h, \ a \in \mathcal{A}.$$

Then $\eta_{\pi,h}$ is a π - ε -cocycle, which is called a **coboundary** or an **inner derivation**. The associated generating functional is

$$\psi_{\pi,h}(a) = \langle h, (\pi(a) - \varepsilon(a)I)h \rangle.$$

Note that for $a, b \in \ker \varepsilon$ we have $\psi_{\pi,h}(ab) = \langle \eta(a^*), \eta(b) \rangle = \langle h, \pi(ab)h \rangle$.

Inner derivations are always completable

Let π be a representation of $\mathcal A$ on B(H) and $h\in H$ a vector. Define

$$\eta_{\pi,h}(a) = \pi(a)h - \varepsilon(a)h, \ a \in \mathcal{A}.$$

Then $\eta_{\pi,h}$ is a π - ε -cocycle, which is called a **coboundary** or an **inner derivation**. The associated generating functional is

$$\psi_{\pi,h}(a) = \langle h, (\pi(a) - \varepsilon(a)I)h \rangle.$$

Note that for $a, b \in \ker \varepsilon$ we have $\psi_{\pi,h}(ab) = \langle \eta(a^*), \eta(b) \rangle = \langle h, \pi(ab)h \rangle$.

Approximately inner cocycles are always completable

A π - ε -cocycle η is called **approximately inner** if it is a a pointwise limit of coboundaries $\eta_{\pi,h(\lambda)}$ for some net $(h(\lambda))_{\lambda}$. Then any approximately inner cocycle is completable (by the poitwise limit of $\psi_{\pi,h(\lambda)}$).

Problem (Schürmann 1990)

Does there exists an analogue of Lévy-Khintchine formula, i.e. a decomposition of any generating functional on a Hopf *-algebra into "maximal Gaussian" and "purely non-Gaussian" part?

Definition (Schürmann 1990)

A generating functional $\psi : \mathcal{A} \to \mathbb{C}$ is called **Gaussian** if $\psi(abc) = 0$ whenever $a, b, c \in \ker \varepsilon$.

Let ψ have the Schürmann triple (π, η, ψ) . Then TFCAE:

- ψ is Gaussian, i.e vanishes on $(\ker \varepsilon)^3$,
- $\eta(ab) = \varepsilon(a)\eta(b) + \eta(a)\varepsilon(b).$
- $\pi(a) = \varepsilon(a) \mathrm{id}_H$ for all $a \in \mathcal{A}$

Lévy-Khintchine decomposition for *-bialgebras

Can we always extract Gaussian part from a generating functional?

Reformulation in terms of Schürmann triple

• If $((H,\pi),\eta,\psi)$ is a Schürmann triple, then

$$H_{\mathrm{G}} := igcap_{\mathbf{a}\in \ker arepsilon} \ker \pi(\mathbf{a}) = \{u \in H : \pi(\mathbf{a})u = arepsilon(\mathbf{a})u, \mathbf{a}\in \mathcal{A}\}$$

is the maximal Gaussian subspace^a of H which is reducing for π . Hence $\pi = \pi_G \oplus \pi_R$.

ullet Let $P_{
m G}$ be the orthogonal projection onto $H_{
m G}$. Then

 $\eta_{\rm G} := P_{\rm G} \circ \eta$

is a Gaussian cocycle (with values in H_G)

• Then $\eta_{\rm R} = (\mathrm{id} - P_{\rm G}) \circ \eta$ is a cocycle (purely non-Gaussian) and $\eta = \eta_{\rm G} \oplus \eta_{\rm R}$.

"maximal subspace of H such that $\pi|_{H_G}(a) = arepsilon(a) \mathrm{id}_{H_G}$

Let ψ be a generating functional with the Schürmann triple (π, η, ψ) , and let $(\pi, \eta) = (\pi_{\rm G}, \eta_{\rm G}) \oplus (\pi_{\rm R}, \eta_{\rm R}).$

Definition (Schürmann'90; see also Franz, Gerhold, Thom'15)

We say that $\psi : \mathcal{A} \to \mathbb{C}$ admits a Lévy-Khintchine decomposition if there exist generating functionals $\psi_{G}, \psi_{R} : \mathcal{A} \to \mathbb{C}$ such that

- $\psi = \psi_{\mathrm{G}} + \psi_{\mathrm{R}}$,
- $(\pi_{
 m G},\eta_{
 m G},\psi_{
 m G})$ and $(\pi_{
 m R},\eta_{
 m R},\psi_{
 m R})$ are Schürmann triples.

We say that A has the property (LK) if all generating functionals on A admit Lévy-Khintchine decomposition.

ullet If exists, $\psi_{
m G}$ (the maximal Gaussian part) is unique up to a drift.

Lévy-Khintchine decomposition for Hopf *-algebras/CQGs

 ${\cal A}$ has the property (LK) if for any generating functional

$$(\pi,\eta,\psi)=(\pi_{\mathrm{G}},\eta_{\mathrm{G}},\psi_{\mathrm{G}})\oplus(\pi_{\mathrm{R}},\eta_{\mathrm{R}},\psi_{\mathrm{R}}).$$

Remark

If we show that one of ψ_x ($x \in \{G, R\}$) exists, then the other one can be defined $\psi_y = \psi - \psi_x$.

We say that \mathcal{A} has the property:

- (AC) if any cocycle is completable;
- (GC) if any Gaussian cocycle is completable;
- (NC) if any purely non-Gaussian cocycle is completable.

$$(AC) \Rightarrow (GC) \text{ or } (NC) \Rightarrow (LK)$$

$\mathcal{SU}_q(2), \ q \in (0,1)$

 $SU_q(2)$: the compact quantum groupwith $C(SU_q(2))$ the universal unital C*-algebra generated by α , γ satisfying

$$\begin{split} &\alpha\gamma = q\gamma\alpha, \quad \alpha\gamma^* = q\gamma^*\alpha, \quad \gamma\gamma^* = \gamma^*\gamma, \\ &\alpha\alpha^* + q^2\gamma\gamma^* = 1, \quad \alpha^*\alpha + \gamma\gamma^* = 1 \end{split}$$

and $\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma$, $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$. (Note that $C(SU_q(2))$ a graph C*-algebra! [Hong, Szymański 2002]) $SU_q(2) := \operatorname{Pol}(SU_q(2))$ is a *-bialgebra, $\varepsilon(\alpha) = 1$ and $\varepsilon(\gamma) = 0$.

$\mathcal{SU}_q(2), \ q \in (0,1)$

 $SU_q(2)$: the compact quantum groupwith $C(SU_q(2))$ the universal unital C*-algebra generated by α , γ satisfying

$$\begin{split} &\alpha\gamma = q\gamma\alpha, \quad \alpha\gamma^* = q\gamma^*\alpha, \quad \gamma\gamma^* = \gamma^*\gamma, \\ &\alpha\alpha^* + q^2\gamma\gamma^* = 1, \quad \alpha^*\alpha + \gamma\gamma^* = 1 \end{split}$$

and $\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma$, $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$. (Note that $C(SU_q(2))$ a graph C*-algebra! [Hong, Szymański 2002]) $SU_q(2) := \operatorname{Pol}(SU_q(2))$ is a *-bialgebra, $\varepsilon(\alpha) = 1$ and $\varepsilon(\gamma) = 0$.

Remark

There is a one-parameter family of 1-dim (irreducible) *-representations of $SU_a(2)$ given by

$$\varepsilon_{\theta}(\alpha) = e^{i\theta}, \quad \varepsilon_{\theta}(\gamma) = 0, \qquad \theta \in [0, 2\pi).$$

Note that $\varepsilon_0 = \varepsilon$. Moreover, this family is pointwise C^{∞} in θ (i.e. the function $\theta \mapsto \varepsilon_{\theta}(a)$ is C^{∞} for any fixed $a \in \mathcal{A}$).

LK-decomposition on $\mathcal{SU}_q(2)$: Gaussian part

Remarks

• The mapping

$$\varepsilon' : \mathcal{A} \ni a \mapsto \frac{d}{d\theta} \varepsilon_{\theta}(a) \big|_{\theta=0} \in \mathbb{C}$$

is a ε - ε -cocycle (i.e Gaussian cocycle).
• The mapping
 $\varepsilon'' = 1 \ d^2$

$$rac{arepsilon''}{2}:\mathcal{A}
i a\mapsto rac{1}{2}rac{d^2}{d heta^2}arepsilon_ heta(a)igert_{ heta=0}\in\mathbb{C}$$

is a generating functional associated to $\varepsilon'.$

LK-decomposition on $\mathcal{SU}_q(2)$: Gaussian part

Remarks

• The mapping
$$\varepsilon' : \mathcal{A} \ni a \mapsto \frac{d}{d\theta} \varepsilon_{\theta}(a) \big|_{\theta=0} \in \mathbb{C}$$
 is a $\varepsilon \in \text{cocycle}$ (i.e. Coussian cocycle)

is a ε - ε -cocycle (i.e Gaussian cocycle).

The mapping

$$\frac{\varepsilon''}{2}:\mathcal{A}\ni \textbf{\textit{a}}\mapsto \frac{1}{2}\frac{d^2}{d\theta^2}\varepsilon_\theta(\textbf{\textit{a}})\big|_{\theta=0}\in\mathbb{C}$$

is a generating functional associated to $\varepsilon'.$

Theorem (Schürmann, Skeide'98)

Any gaussian cocyle on $SU_q(2)$ is of the form $\eta(a) = \varepsilon'(a)h$ with $h \in H$. It admits a generating functional with

$$\psi = \mathbf{r}\varepsilon' + \mathbf{b}\varepsilon''$$

with $r \in \mathbb{R}$ and $b \ge 0$. Since any Gaussian cocycle is completable, $SU_q(2)$ has the property (GC), and hence (LK).

Theorem (Schürmann, Skeide'98)

• Let π be the representation of $\mathcal{SU}_q(2)$ such that $H_G = \{0\}$ and let $h \in H$. Set $h_p = (1 - p\pi(\alpha^*))^{-1}h$. Then for any $a \in \mathcal{A}$ there exists the limit $\lim_{p \to 1} \eta_{\pi,h_p}(a)$, and thus

$$\eta(\mathbf{a}) = \lim_{p \to 1} \eta_{\pi,h_p}(\mathbf{a}) = \lim_{p \to 1} (\pi(\mathbf{a}) - \varepsilon(\mathbf{a})I)(1 - p\pi(\alpha^*))^{-1}h$$

is an approximately inner π - ε cocycle, which is purely non-gaussian.

- Any purely non-gaussian cocycle appears this way with $h = \eta(\alpha^*)$.
- $SU_q(2)$ has (NC): any purely non-gaussian cocycle η on $SU_q(2)$ is completable. The associated generating functional is

$$\psi(a) = \lim_{p \to 1} \langle h_p, (\pi(a) - \varepsilon(a)I)h_p \rangle.$$

Hunt formula for $SU_q(2)$ (Schürmann, Skeide'98)

Any generating functional is of the form

$$\psi(a) = r\varepsilon'(a) + b\varepsilon''(a) + \lim_{p \to 1} \langle h_p, (\pi(a) - \varepsilon(a)I)h_p \rangle$$

with $r \in \mathbb{R}$, $b \ge 0$, π a purely non-gaussian representation of $\mathcal{SU}_q(2)$ on H and $h \in H$.

$\mathcal{SU}_q(N), \ q \in (0,1)$

 $SU_q(N)$, $N \in \mathbb{N}$: the compact quantum group with $C(SU_q(N))$ being the universal unital C*-algebra generated by $u = (u_{jk})_{i,k=1}^N$ with the relations

a) unitarity condition: $\sum_{s=1}^{N} u_{js} u_{ks}^* = \delta_{jk} 1 = \sum_{s=1}^{N} u_{sj}^* u_{sk}$

b) twisted determinant condition:

$$\sum_{\sigma \in S_N} (-q)^{i(\sigma)} u_{\sigma(1),\tau(1)} u_{\sigma(2),\tau(2)} \dots u_{\sigma(N),\tau(N)} = (-q)^{i(\tau)} 1$$

equipped with $\Delta(u_{jk}) = \sum_{p=1}^{N} u_{jp} \otimes u_{pk}$.

$\mathcal{SU}_q(N), \ q \in (0,1)$

 $SU_q(N)$, $N \in \mathbb{N}$: the compact quantum group with $C(SU_q(N))$ being the universal unital C*-algebra generated by $u = (u_{jk})_{i,k=1}^N$ with the relations

a) unitarity condition:
$$\sum_{s=1}^{N} u_{js} u_{ks}^* = \delta_{jk} 1 = \sum_{s=1}^{N} u_{sj}^* u_{sk}$$

b) twisted determinant condition:

$$\sum_{\sigma\in S_N} (-q)^{i(\sigma)} u_{\sigma(1),\tau(1)} u_{\sigma(2),\tau(2)} \dots u_{\sigma(N),\tau(N)} = (-q)^{i(\tau)} 1$$

equipped with $\Delta(u_{jk}) = \sum_{p=1}^{N} u_{jp} \otimes u_{pk}$.

Examples of relations:

$$u_{ij}u_{kj} = qu_{kj}u_{ij} \ (i < k), \quad u_{ij}u_{kl} = u_{kl}u_{ij} - (q^{-1} - q)u_{il}u_{kj} \ (i < k, j < l)$$
$$u_{ij}u_{kl}^* = u_{kl}^*u_{ij} \ (i \neq k, j \neq l), \quad u_{NN}^*u_{NN} = q^2u_{NN}u_{NN}^* + (1 - q^2) 1$$

 $\mathcal{SU}_q(\mathsf{N}) := \operatorname{Pol}(\mathcal{SU}_q(\mathsf{N}))$ is a *-bialgebra with $\varepsilon(u_{jk}) = \delta_{jk}$.

Decomposition on $\mathcal{SU}_q(N)$: Gaussian part

Remark

There is a (N-1)-parameter family of 1-dim (irreducible) *-representations of $\mathcal{SU}_q(N)$ given by $\varepsilon_{\theta_2,...,\theta_N}(u_{kl}) := e^{i\theta_k}\delta_{k,l},$ where $\theta_2,...,\theta_N \in [0, 2\pi)$ and $\theta_1 = (-\sum_{k=2}^N \theta_k)_{\text{mod } 2\pi}.$ This family is pointwise C^{∞} in θ_j for j = 2,...,N, and $\varepsilon_{0,...,0} = \varepsilon$.

• For any
$$j = 2, ..., N$$
, the mapping
 $\varepsilon'_j : \mathcal{A} \ni a \mapsto \frac{\partial \varepsilon_{\theta_2,...,\theta_N}(a)}{\partial \theta_j} |_{\theta_2 = ... = \theta_N = 0} \in \mathbb{C}$

is a Gaussian cocycle. And so it any linear combination of ε'_j 's. • For any j, k the mapping $\frac{\varepsilon''_{jk}}{2} : \mathcal{A} \ni \mathbf{a} \mapsto \frac{1}{2} \frac{\partial^2 \varepsilon_{\theta_2,...,\theta_N}(\mathbf{a})}{\partial \theta_i \theta_k} \big|_{\theta_2 = ... = \theta_N = 0} \in \mathbb{C}$

is a generating functional.

Decomposition on $\mathcal{SU}_q(N)$: Gaussian part

Theorem (FKLS)

• Gaussian cocycles $\mathcal{SU}_q(N)$ are precisely of the form

$$\eta(a) = \sum_{j=2}^{N} \varepsilon'_j(a) h_j$$

for some $h_2, \ldots, h_N \in H$.

• Any Gaussian generating functional on $\mathcal{SU}_q(N)$ will be of the form $\psi(a) = \sum_{j=2}^N \varepsilon'_j(a)r_j + \sum_{j=2}^N B_{jk}\varepsilon''_{jk}(a), \quad r_j \in \mathbb{R}, B \in M_n(\mathbb{R}), B \ge 0.$

Decomposition on $\mathcal{SU}_q(N)$: Gaussian part

Theorem (FKLS)

• Gaussian cocycles $\mathcal{SU}_q(N)$ are precisely of the form

$$\eta(a) = \sum_{j=2}^N \varepsilon_j'(a) h_j$$

for some $h_2, \ldots, h_N \in H$.

• Any Gaussian generating functional on $\mathcal{SU}_q(N)$ will be of the form $\psi(a) = \sum_{j=2}^N \varepsilon'_j(a)r_j + \sum_{j=2}^N B_{jk}\varepsilon''_{jk}(a), \quad r_j \in \mathbb{R}, B \in M_n(\mathbb{R}), B \ge 0.$

• A Gaussian η admits a generating functional iff it is hermitian. i.e. $\langle \eta(a), \eta(b) \rangle = \langle \eta(b^*), \eta(a^*) \rangle.$

 For N ≥ 3, SU_q(N) does not have (GC), since there exist non-hermitian Gaussian cocycles on SU_q(N) (⟨h_j, h_k⟩ ≠ ⟨h_k, h_j⟩).

Anna Wysoczańska-Kula

Quantum subgroup chain

We have the chain of quantum subgroups

$$\{e\} = \mathcal{SU}_q(1) \leqslant \mathcal{SU}_q(2) \leqslant \cdots \leqslant \mathcal{SU}_q(N) \leqslant \cdots$$

with the epimorphisms $s_n : \mathcal{SU}_q(n) \to \mathcal{SU}_q(n-1)$, which is determined by

$$s_{n}: \begin{bmatrix} u_{11} & \cdots & u_{1,n-1} & u_{1n} \\ \vdots & \ddots & \vdots & \vdots \\ u_{n-1,1} & \cdots & u_{n-1,n-1} & u_{n-1,n} \\ u_{n1} & \cdots & u_{n,n-1} & u_{nn} \end{bmatrix} \longmapsto \begin{bmatrix} u_{11} & \cdots & u_{1,n-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ u_{n-1,1} & \cdots & u_{n-1,n-1} & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

Quantum subgroup chain

We have the chain of quantum subgroups

$$\{e\} = \mathcal{SU}_q(1) \leqslant \mathcal{SU}_q(2) \leqslant \cdots \leqslant \mathcal{SU}_q(N) \leqslant \cdots$$

with the epimorphisms $s_n: \mathcal{SU}_q(n) \to \mathcal{SU}_q(n-1)$, which is determined by

$$s_{n}: \begin{bmatrix} u_{11} & \cdots & u_{1,n-1} & u_{1n} \\ \vdots & \ddots & \vdots & \vdots \\ u_{n-1,1} & \cdots & u_{n-1,n-1} & u_{n-1,n} \\ u_{n1} & \cdots & u_{n,n-1} & u_{nn} \end{bmatrix} \longmapsto \begin{bmatrix} u_{11} & \cdots & u_{1,n-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ u_{n-1,1} & \cdots & u_{n-1,n-1} & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

Definition

We say that a linear map $T : SU_q(n) \to V$ lives on $SU_q(n-1)$ if it factors through s_n , i.e. $T = \tilde{T} \circ s_n$ for some $\tilde{T} : SU_q(n-1) \to V$.

For example, a rep π on $SU_q(N)$ lives on $SU_q(N-1)$ iff $\pi(u_{NN}) = I$. Then necessarily, by the unitarity condition, $\pi(u_{jN}) = 0 = \pi(u_{Nj})$ for j < N.

Anna Wysoczańska-Kula

LK-decomposition on $SU_q(N)$: non-Gaussian part

Take a Schürmann triple (π, η, ψ) on $\mathcal{SU}_q(N)$ with $\pi : \mathcal{SU}_q(N) \to B(H)$.

- Space decomposition The space $L_N := \ker(\operatorname{id} - \pi(u_{NN}))^{\perp}$ is invariant, so $H = L_N \oplus R_N$.
- **2** Decomposition of the representation Accordingly, $\pi = \lambda \oplus \rho$.
 - $\lambda(1-u_{NN})$ has trivial kernel, so it is injective;
 - $\rho(u_{NN}) = I$, since ρ acts on $R_N = L_N^{\perp} = \ker(\operatorname{id} \pi(u_{NN}))$
- Obscillation of the cocycle
 Let $\eta = \eta^{\lambda} \oplus \eta^{\rho}$ with $\eta^{\lambda} := P_{L_N} \circ \eta, \ \eta^{\rho} := P_{R_N} \circ \eta.$ $\eta^{\rho}(u_{NN}) = 0$
- Ready for induction We have the decomposition $(\pi, \eta) = (\lambda, \eta^{\lambda}) \oplus (\rho, \eta^{\rho})$ and
 - $\rho(u_{NN}) = I$ implies ρ lives on $SU_q(N-1)$.
 - $\eta^{\rho}(u_{NN}) = 0$ implies η^{ρ} lives on $\mathcal{SU}_q(N-1)$.
 - If we complete (λ,η^{λ}) , the induction may start.

• η^{λ} is approximately inner

We know that $\lambda(1 - u_{NN})$ is injective. In this case, the value $h = \eta^{\lambda}(u_{NN})$ determines η^{λ} uniquely. One shows that the limits on the RHS exist and it equals

$$\eta^{\lambda}(a) = \lim_{p \to 1} \left(\lambda(a) - \varepsilon(a) \mathrm{id} \right) \underbrace{(\mathrm{id} - p\lambda(u_{NN}))^{-1} h}_{h_p}$$

Finding generating functional

Approximately inner cocylces are completable with

$$\psi^{\lambda}(a) := \lim_{p \to 1} \langle h_p, [\pi(a) - \varepsilon(a)I]h_p \rangle, \quad a \in SU_q(N).$$

So $(\lambda, \eta^{\lambda}, \psi^{\lambda})$ is a Schürmann triple.

Theorem

Any purely non-Gaussian pair (π, η) on $\mathcal{SU}_q(N)$ can be completed to a Schürmann triple (ρ, η, ψ) with

$$(\pi,\eta,\psi)=(\pi|_{H_N},\eta_N,\psi_N)\oplus\cdots\oplus(\pi|_{H_2},\eta_2,\psi_2),$$

where $\pi|_{H_j}(1 - u_{jj})$ is injective and $\pi|_{H_j}$ as well as η_j lives on $\mathcal{SU}_q(j)$. Consequently, $\mathcal{SU}_q(N)$ has (NC), hence admits a Lévy-Kchintchine type decomposition.

Hunt formula for $SU_q(N)$ (FKLS)

For $q \in (0,1)$ and $N \ge 3 SU_q(N)$ has the property (LK). Moreover, every generating functional of a Lévy process on $SU_q(N)$ is of the form

$$\psi(a) = \sum_{j=2}^{N} r_j \varepsilon'_j(a) + \sum_{j,k=2}^{N} B_{jk} \varepsilon''_{jk}(a) + \lim_{\rho \to 1} \sum_{j=2}^{N} \langle h_{j,\rho}, [\pi_j(a) - \varepsilon(a)] h_{j,\rho} \rangle,$$

where $r_j \in \mathbb{R}$, $B \in M_n(\mathbb{R})$ is positive definite and some net $(h_{j,p})_p$ in H.

Note that $h_{j,p} = (\operatorname{id} - p\pi_j(u_{jj}))^{-1}\eta_j(u_{jj}).$

LK-decomposition on $SU_q(N)$

Let π be a rep of $SU_q(N)$ on H such that $\pi(1 - u_{NN})$ is injective. Which vectors in H may occur as values $\eta(u_{NN})$ for a cocycle η ?

LK-decomposition on $SU_q(N)$

Let π be a rep of $SU_q(N)$ on H such that $\pi(1 - u_{NN})$ is injective. Which vectors in H may occur as values $\eta(u_{NN})$ for a cocycle η ?

- Not every vector in H may occur as η(u_{NN}) for a cocycle! Take the ∞-dim irrep ρ of SU_q(2) and define ρ₁₂ ★ ρ₂₃ on ℓ²(N) × ℓ²(N). Then there is no cocycle with the value e₀ ⊗ e₀ on u₃₃.
- There are many vectors that do give rise to cocycles. More precisely, any element $h \in H_0 := \pi(1 u_{NN})H$ determines a cocycle (which is also a coboundary). H_0 is a dense subspace of H.

The map

$$\|.\|_{\pi}:h\mapsto \left(\sum_{j=1}^{N}\|\pi(1-u_{jj})h\|^{2}
ight)^{1/2}$$

is a norm on *H*. Cauchy sequences w.r.t. $\|.\|_{\pi}$ defines pointwise converging coboundaries.

LK-decomposition: $\mathcal{SU}_q(2)$ vs. $\mathcal{SU}_q(N)$ (N > 2)

- $SU_q(2)$ has (GC), which is no longer true for N > 2
- Any purely non-gaussian cocycle is a direct sum of N 1 approximately inner cocylces living on smaller quantum subgroups.
- Both algebras have (NC).
- The parametrization space of purely non-gaussian cocycles (and the related generating functionals) differs.
- The Lévy-Khintchine decomposition exsits for both algebras.

Does every *-bialgebra admit LK decomposition?

Does every *-bialgebra admit LK decomposition?

[YES] commutative *-bialgebras, Pol(G) for a compact G (Schürmann'90) [YES] the Brown algebra $\mathcal{U}\langle d \rangle$ (Schürmann'90) [YES] $\mathcal{SU}_{q}(2)$ (Schürmann, Skeide'98)

[YES] the free permutation group S⁺_n (Franz, AK, Skalski'16)
[YES] S⁺_D := S⁺_n/⟨uD = Du⟩ (include: quantum automorphism group of graphs, quantum reflection groups) (Bichon, Franz, Gerhold'17)
[YES] universal quantum groups U⁺_F and O⁺_F provided F*F has eigenvalues of multiplicity 1 (Das, Franz, AK, Skalski'18)

[YES] $SU_q(N)$ and $U_q(N)$, $N \ge 3$, $q \in (0, 1)$, have (LK) (Franz, AK, Lindsay, Skeide'24?)

Does every *-bialgebra admit LK decomposition?

- [YES] commutative *-bialgebras, Pol(G) for a compact G (Schürmann'90)
- [YES] the Brown algebra $\mathcal{U}\langle d \rangle$ (Schürmann'90)
- [YES] $SU_q(2)$ (Schürmann, Skeide'98)
- [NO] the group algebra of the fundamental group of an oriented surface of genus $k \ge 2$ (Franz, Gerhold, Thom'15)
- [YES] the free permutation group S_n^+ (Franz, AK, Skalski'16)
- [YES] $S_D^+ := S_n^+ / \langle uD = Du \rangle$ (include: quantum automorphism group of graphs, quantum reflection groups) (Bichon, Franz, Gerhold'17)
- [YES] universal quantum groups \mathcal{U}_{F}^{+} and \mathcal{O}_{F}^{+} provided $F^{*}F$ has eigenvalues of multiplicity 1 (Das, Franz, AK, Skalski'18)
- [NO] \mathcal{U}_n^+ $(n \ge 2)$ and \mathcal{O}_n^+ $(n \ge 3)$ (Das, Franz, AK, Skalski'18)
- [YES] $SU_q(N)$ and $U_q(N)$, $N \ge 3$, $q \in (0, 1)$, have (LK) (Franz, AK, Lindsay, Skeide'24?)

- **General Problem:** when a *-bialgebra admits a Levy-Khintchine decomposition?
- **Observation:** Neither the property (LK) nor its negations transfer to quantum subgroups (quotients of algebras):

$$\mathcal{O}^+_{2 (LK)} \subset \mathcal{O}^+_{3 \operatorname{no}(LK)} \subset \mathcal{U}\langle 3 \rangle_{(LK)}.$$

References

- O M.Schürmann, Gaussian states on bialgebras. In: LMM 1442 (1990).
- M.Schürmann, M.Skeide, Infinitesimal generators on the quantum group SU_q(2), IDAQP 1 (1998).
- U. Franz, M. Gerhold and A. Thom, On the Lévy-Khintchine decomposition of generating functionals. *Comm. Stoch. Anal.* 9 (2015), no. 4 529-544.
- U.Franz, AK, M.Lindsay, M.Skeide, Hunt's Formula for SU_q(N) and U_q(N). To appear in Indiana Univ. Math. J. arXiv:2009.06323.

References

- M.Schürmann, Gaussian states on bialgebras. In: LMM 1442 (1990).
- M.Schürmann, M.Skeide, Infinitesimal generators on the quantum group SU_q(2), IDAQP 1 (1998).
- U. Franz, M. Gerhold and A. Thom, On the Lévy-Khintchine decomposition of generating functionals. *Comm. Stoch. Anal.* 9 (2015), no. 4 529-544.
- U.Franz, AK, M.Lindsay, M.Skeide, Hunt's Formula for $SU_q(N)$ and $U_q(N)$. To appear in *Indiana Univ. Math. J.* arXiv:2009.06323.

Thank you!