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The essence of the problem

Let A be a unital ∗-algebra with a character ε.

De�nition

A linear mapping ψ : A→ C is called generating functional if

ψ(1A) = 0,

ψ(a∗) = ψ(a) for a ∈ A,

ψ(a∗a) ≥ 0 for a ∈ ker ε.

A generating functional ψ is called Gaussian if ψ(abc) = 0 for any
a, b, c ∈ ker ε.

Question 1: Whan are all possible generating functionals on a given
(A, ε)?

Question 2: Is it always possible to decompose a given generating
functional ψ into ψ = ψG + ψR , where ψG and ψR are generating
functionals and ψG is maximally Gaussian?
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Motivations: Lévy process with values in Rn

Let (Ω,F ,P) be a probability space.

De�nition

A family (Xt)t≥0 of F-mesurable functions Xt : Ω→ Rn is called Lévy
process if

X0 = 0 P-almost everywhere,

the increments are stationary: the law of Xt − Xs depends only on
t − s

the increments (Xtj+1 − Xtj )j=1,...,n are independent whenever
0 ≤ t1 < t2 < . . . < tn+1,

(stochastic continuity) Xt converges in probability to X0 when t ↘ 0,
i.e. ⇔ P(|Xt | > a)→ 0 as t ↘ 0.

Examples: Gaussian process (Brownian motion), Poisson process,
compound Poisson, etc.
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Lévy process with values in R: examples

Source: A. Papapantoleon, An Introduction to Lévy Processes with Applications in Finance.
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Classi�cation

Lévy-Khintchine Formula (1934/1937)

X = (Xt)t is a Lévy process on Rn i� the characteristic function

φX (u) :=

∫
Rn

e i〈u,x〉µX1(dx) = eηX (u),

where

ηX (u) = i〈b, u〉 − 1

2
〈u, σu〉+

∫
Rn

(e i〈u,y〉 − 1− i〈u, y〉1|y |≤1)ν(dy)

for some b ∈ Rn, σ ∈ M(n, n) positive-de�nite and a 'Lévy measure' ν on
Rn.

Note: ηX is a sum of ηG (for a Gaussian process) and a limit of ηJ (for
compound Poisson processes).
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Generalizations of Lévy process

In order to generalize the notion of Lévy process to processes with values in
S , i.e. (Xt : Ω→ S)t≥0, we need:

a neutral element 0 ∈ S (since X0 = 0);

a composition rule and inverse elements (for the notion of increments
Xt − Xs or, multiplicatively, X−1s Xt);

We need a group structure!
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Classi�cation

Let G be a Lie group, g � the related Lie algebra.

(X1, . . . ,Xn) basis in g

(e1, . . . , e
n) are canonical coordinates in a neighborhood of e,

(X L
1 , . . . ,X

L
n ) derivations in the direction related to Xi

Hunt's Formula (1956)

Lévy process on G are in one-to-one correspondence with the generating
functionals L of the form

Lf (x) =
∑
i

biX
L
i f (x) +

∑
i ,j

aijX
L
i X

L
j f (x)

+

∫
G\{e}

[
f (xy)− f (x)−

∑
i

e i (x)X L
i (y)

]
ν(dy)

for some b ∈ Rn, a = (aij)i ,j ∈ Mn(R) positive de�nite, symmetric and a
Lévy measure ν on G \ {e}. The domain of L contains C∞c (G )-functions.
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A noncommutative generalization of Lévy processes

Let (A,∆, ε) be a ∗-bialgebra, (B,Φ) � a nc probability space.

De�nition (Accardi, Schürmann, von Waldenfels'88)

A Lévy process on A is a quantum stochastic process, that is a family of
a ∗-homomorphisms (jst : A → B)t≥s≥0, which satis�es:

jtt = ε1A;

the increments (jst) are stationary, i.e. ϕst = Φ ◦ jst ∼ t − s,

the increments (jst) are (tensor) independent: for nonoverlapping
intervals Ik = [sk , tk ] (with jk := jsk ,tk ) and all bj ∈ A we have
(i) [jk(b1), jl(b2)] = 0 for k 6= l ;
(ii) Φ

(
j1(b1) . . . jn(bn)

)
= Φ

(
j1(b1)

)
. . .Φ

(
jn(bn)

)
;

(increment property) for all 0 ≤ r ≤ s ≤ t

jrs ? jst = jrt ,

where j1 ? j2 := mB ◦ (j1 ⊗ j2) ◦∆;

(weak continuity) jst converges to jss in distribution for t ↘ s.
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Classi�cation

???
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Lévy processes and equivalent objects

Given a Lévy process (jst : A → B)0≤s<t , de�ne

ϕt = Φ ◦ j0t = Φ ◦ js,s+t .

Then (ϕt)t≥0 is a semigroup of states on A, i.e. for a ∈ A, s, t ≥ 0
ϕt(a

∗a) ≥ 0, ϕt(1A) = 1,

ϕs ? ϕt = ϕs+t , limt↘0 ϕt(a) = ϕ0(a) = ε(a).

For the semigroup of states there exists an in�nitesimal generator

ψ =
d

dt
|t=0ϕt .

Theorem

A linear mapping ψ : A → C is an in�nitesimal generator of a semigroup of
states i� it is a generating fuctional:

• ψ(1) = 0, • ψ(a∗) = ψ(a) • ψ(a∗a) ≥ 0 (a ∈ ker ε).

For the proof set ϕt = exp?(tψ) =
∑∞

n=0
tnψ?n

n! .
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Lévy processes and equivalent objects

For a generating functional ψ we can get via the GNS-type construction:

Schürmann triples (π, η, ψ)

π : A → L#(H) is a unital ∗-representation of A on some
pre-Hilbert space H;

η : A → H is a linear mapping satisfying

η(ab) = π(a)η(b) + η(a)ε(b)

(1-π-ε-cocycle);

ψ : A → C is a linear hermitian functional satisfying

ψ(ab) = ε(a)ψ(b) + 〈η(a∗), η(b)〉+ ψ(a)ε(b)

(−∂ψ = η ∪ η).

Set 〈a, b〉ψ := ψ
(
(a− ε(a)1)∗(b − ε(b)1)

)
and H := A/{a : 〈a, a〉ψ = 0}.

Moreover take η(a) := [a] and π(a)η(b) := η(a(b − ε(b))).
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Lévy processes and equivalent objects

We have one-to-one correspondences between the following objects:

Lévy processes (jst)t>s≥0 on A
l

(Weak-*) cont. convolutions semigroups of states (ϕt)t≥0 on A
l

Generating functionals ψ : A → C
l

Surjective1 Schürmann triples (π, η, ψ)

Remarks
1 If we want to describe all Lévy processes on a given A, it is enough to

describe Schürmann triples on it.

2 For considering generating functionals and Schürmann triples,
augmented algebra (A, ε) is enough. To recover the Lévy process, the
comultiplication is necessary.

1i.e. surjective: η(B) = H or η(B) = H
Anna Wysocza«ska-Kula LK decomposition for SUq(N) 12 / 36



Lévy processes and equivalent objects

We have one-to-one correspondences between the following objects:

Lévy processes (jst)t>s≥0 on A
l

(Weak-*) cont. convolutions semigroups of states (ϕt)t≥0 on A
l

Generating functionals ψ : A → C
l

Surjective1 Schürmann triples (π, η, ψ)

Remarks
1 If we want to describe all Lévy processes on a given A, it is enough to

describe Schürmann triples on it.

2 For considering generating functionals and Schürmann triples,
augmented algebra (A, ε) is enough. To recover the Lévy process, the
comultiplication is necessary.

1i.e. surjective: η(B) = H or η(B) = H
Anna Wysocza«ska-Kula LK decomposition for SUq(N) 12 / 36



Schürmann triples and classi�cation of GFs

Lévy processes ↔ Schürmann triple (π, η, ψ)

Procedure for describing all LPs

1 Find all ∗-representations π of A (on some H).

2 Describe all linear mappings η satisfying η(ab) = π(a)η(b) + η(a)ε(b).

3 Check whether for (π, η) there exists ψ such that (π, η, ψ) is a
Schürmann triple. If so, we say that η is completable.

4 Find all ψ's associated to a given (π, η): if there exists one, then all
others are of the form ψ+drift term(*)

(*) A drift is a generating functional vanishing on (ker ε)2, or equivalently
having η = 0.

Apart from (1), the most di�cult part is (3). What can go wrong?
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What can go wrong?

Given a representation π and a cocycle η it is necessary to de�ne

ψ(1A) = 0, ψ(ab) = 〈η(a∗), η(b)〉, a, b ∈ ker ε.

Then it it normalized, cond. positive and hermitian on (ker ε)2.

Potential con�icts: ab = cd ⇒ 〈η(a∗), η(b)〉 = 〈η(c∗), η(d)〉

Example of a pair (π, η) without generating functional

A : free unital commutative ∗-algebra generated by x ,

counit : ε(1) = 1, ε(x) = 0.

For z ,w ∈ C set
η(x) = z , η(x∗) = w

and extend to a ε-ε-cocyle.
If |z | 6= |w |, then (ε, η) does not admit generating functional, since

|z |2 = ψ(x∗x) = ψ(xx∗) = |w |2.
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When it can't go wrong?

Inner derivations are always completable

Let π be a representation of A on B(H) and h ∈ H a vector. De�ne

ηπ,h(a) = π(a)h − ε(a)h, a ∈ A.

Then ηπ,h is a π-ε-cocycle, which is called a coboundary or an inner
derivation. The associated generating functional is

ψπ,h(a) = 〈h, (π(a)− ε(a)I )h〉.

Note that for a, b ∈ ker ε we have ψπ,h(ab) = 〈η(a∗), η(b)〉 = 〈h, π(ab)h〉.

Approximately inner cocycles are always completable

A π-ε-cocycle η is called approximately inner if it is a a pointwise limit of
coboundaries ηπ,h(λ) for some net (h(λ))λ. Then any approximately inner
cocycle is completable (by the poitwise limit of ψπ,h(λ)).
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Lévy-Khintchine decomposition for ∗-bialgebras

Problem (Schürmann 1990)

Does there exists an analogue of Lévy-Khintchine formula, i.e. a
decomposition of any generating functional on a Hopf ∗-algebra into
�maximal Gaussian� and �purely non-Gaussian� part?

De�nition (Schürmann 1990)

A generating functional ψ : A → C is called Gaussian if ψ(abc) = 0
whenever a, b, c ∈ ker ε.

Let ψ have the Schürmann triple (π, η, ψ). Then TFCAE:

ψ is Gaussian, i.e vanishes on (ker ε)3,

η(ab) = ε(a)η(b) + η(a)ε(b).

π(a) = ε(a)idH for all a ∈ A
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Lévy-Khintchine decomposition for ∗-bialgebras
Can we always extract Gaussian part from a generating functional?

Reformulation in terms of Schürmann triple

If ((H, π), η, ψ) is a Schürmann triple, then

HG :=
⋂

a∈ker ε
kerπ(a) = {u ∈ H : π(a)u = ε(a)u, a ∈ A}

is the maximal Gaussian subspacea of H which is reducing for π.
Hence π = πG ⊕ πR.

Let PG be the orthogonal projection onto HG. Then

ηG := PG ◦ η
is a Gaussian cocycle (with values in HG )

Then ηR = (id− PG) ◦ η is a cocycle (purely non-Gaussian) and
η = ηG ⊕ ηR.

amaximal subspace of H such that π|HG (a) = ε(a)idHG
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Lévy-Khintchine decomposition for CQG-algebras

Let ψ be a generating functional with the Schürmann triple (π, η, ψ), and
let

(π, η) = (πG, ηG)⊕ (πR, ηR).

De�nition (Schürmann'90; see also Franz, Gerhold, Thom'15)

We say that ψ : A → C admits a Lévy-Khintchine decomposition if
there exist generating functionals ψG, ψR : A → C such that

ψ = ψG + ψR,

(πG, ηG, ψG) and (πR, ηR, ψR) are Schürmann triples.

We say that A has the property (LK) if all generating functionals on A
admit Lévy-Khintchine decomposition.

If exists, ψG (the maximal Gaussian part) is unique up to a drift.
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Lévy-Khintchine decomposition for Hopf ∗-algebras/CQGs

A has the property (LK) if for any generating functional

(π, η, ψ) = (πG, ηG, ψG)⊕ (πR, ηR, ψR).

Remark

If we show that one of ψx (x ∈ {G,R}) exists, then the other one can be
de�ned ψy = ψ − ψx .

We say that A has the property:

(AC) if any cocycle is completable;

(GC) if any Gaussian cocycle is completable;

(NC) if any purely non-Gaussian cocycle is completable.

(AC)⇒ (GC) or (NC)⇒ (LK)
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SUq(2), q ∈ (0, 1)

SUq(2): the compact quantum groupwith C (SUq(2)) the universal unital
C∗-algebra generated by α, γ satisfying

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ,

αα∗ + q2γγ∗ = 1, α∗α + γγ∗ = 1

and ∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α + α∗ ⊗ γ.
(Note that C (SUq(2)) a graph C∗-algebra! [Hong, Szyma«ski 2002])

SUq(2) := Pol(SUq(2)) is a ∗-bialgebra, ε(α) = 1 and ε(γ) = 0.

Remark

There is a one-parameter family of 1-dim (irreducible) ∗-representations of
SUq(2) given by

εθ(α) = e iθ, εθ(γ) = 0, θ ∈ [0, 2π).

Note that ε0 = ε. Moreover, this family is pointwise C∞ in θ (i.e. the
function θ 7→ εθ(a) is C∞ for any �xed a ∈ A).
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LK-decomposition on SUq(2): Gaussian part

Remarks

The mapping
ε′ : A 3 a 7→ d

dθ
εθ(a)

∣∣
θ=0
∈ C

is a ε-ε-cocycle (i.e Gaussian cocycle).

The mapping
ε′′

2
: A 3 a 7→ 1

2

d2

dθ2
εθ(a)

∣∣
θ=0
∈ C

is a generating functional associated to ε′.

Theorem (Schürmann, Skeide'98)

Any gaussian cocyle on SUq(2) is of the form η(a) = ε′(a)h with h ∈ H. It
admits a generating functional with

ψ = rε′ + bε′′

with r ∈ R and b ≥ 0. Since any Gaussian cocycle is completable, SUq(2)
has the property (GC), and hence (LK).

Anna Wysocza«ska-Kula LK decomposition for SUq(N) 21 / 36



LK-decomposition on SUq(2): Gaussian part

Remarks

The mapping
ε′ : A 3 a 7→ d

dθ
εθ(a)

∣∣
θ=0
∈ C

is a ε-ε-cocycle (i.e Gaussian cocycle).

The mapping
ε′′

2
: A 3 a 7→ 1

2

d2

dθ2
εθ(a)

∣∣
θ=0
∈ C

is a generating functional associated to ε′.

Theorem (Schürmann, Skeide'98)

Any gaussian cocyle on SUq(2) is of the form η(a) = ε′(a)h with h ∈ H. It
admits a generating functional with

ψ = rε′ + bε′′

with r ∈ R and b ≥ 0. Since any Gaussian cocycle is completable, SUq(2)
has the property (GC), and hence (LK).

Anna Wysocza«ska-Kula LK decomposition for SUq(N) 21 / 36



LK-decomposition on SUq(2): non-Gaussian part

Theorem (Schürmann, Skeide'98)

Let π be the representation of SUq(2) such that HG = {0} and let
h ∈ H. Set hp = (1− pπ(α∗))−1h. Then for any a ∈ A there exists
the limit limp→1 ηπ,hp(a), and thus

η(a) = lim
p→1

ηπ,hp(a) = lim
p→1

(π(a)− ε(a)I )(1− pπ(α∗))−1h

is an approximately inner π-ε cocycle, which is purely non-gaussian.

Any purely non-gaussian cocycle appears this way with h = η(α∗).

SUq(2) has (NC): any purely non-gaussian cocycle η on SUq(2) is
completable. The associated generating functional is

ψ(a) = lim
p→1
〈hp, (π(a)− ε(a)I )hp〉.
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LK-decomposition on SUq(2)

Hunt formula for SUq(2) (Schürmann, Skeide'98)

Any generating functional is of the form

ψ(a) = rε′(a) + bε′′(a) + lim
p→1
〈hp, (π(a)− ε(a)I )hp〉

with r ∈ R, b ≥ 0, π a purely non-gaussian representation of SUq(2) on H
and h ∈ H.
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SUq(N), q ∈ (0, 1)

SUq(N), N ∈ N : the compact quantum group with C (SUq(N)) being the
universal unital C∗-algebra generated by u = (ujk)Nj ,k=1 with the relations

a) unitarity condition:
N∑

s=1

ujsu
∗
ks = δjk1 =

N∑
s=1

u∗sjusk

b) twisted determinant condition:∑
σ∈SN

(−q)i(σ)uσ(1),τ(1)uσ(2),τ(2) . . . uσ(N),τ(N) = (−q)i(τ)1

equipped with ∆(ujk) =
∑N

p=1 ujp ⊗ upk .

Examples of relations:

uijukj = qukjuij (i < k), uijukl = ukluij − (q−1 − q)uilukj (i < k , j < l)

uiju
∗
kl = u∗kluij (i 6= k , j 6= l), u∗NNuNN = q2uNNu

∗
NN + (1− q2) 1

SUq(N) := Pol(SUq(N)) is a ∗-bialgebra with ε(ujk) = δjk .
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Decomposition on SUq(N): Gaussian part

Remark

There is a (N-1)-parameter family of 1-dim (irreducible) ∗-representations
of SUq(N) given by

εθ2,...,θN (ukl) := e iθk δk,l ,

where θ2, . . . , θN ∈ [0, 2π) and θ1 = (−
∑N

k=2 θk)mod 2π.
This family is pointwise C∞ in θj for j = 2, . . . ,N, and ε0,...,0 = ε.

For any j = 2, . . . ,N, the mapping

ε′j : A 3 a 7→
∂εθ2,...,θN (a)

∂θj

∣∣
θ2=...=θN=0

∈ C

is a Gaussian cocycle. And so it any linear combination of ε′j 's.

For any j , k the mapping
ε′′jk
2

: A 3 a 7→ 1

2

∂2εθ2,...,θN (a)

∂θjθk

∣∣
θ2=...=θN=0

∈ C

is a generating functional.

Anna Wysocza«ska-Kula LK decomposition for SUq(N) 25 / 36



Decomposition on SUq(N): Gaussian part

Theorem (FKLS)

Gaussian cocycles SUq(N) are precisely of the form

η(a) =
N∑
j=2

ε′j(a)hj

for some h2, . . . , hN ∈ H.

Any Gaussian generating functional on SUq(N) will be of the form

ψ(a) =
N∑
j=2

ε′j(a)rj +
N∑
j=2

Bjkε
′′
jk(a), rj ∈ R,B ∈ Mn(R),B ≥ 0.

.

A Gaussian η admits a generating functional i� it is hermitian. i.e.

〈η(a), η(b)〉 = 〈η(b∗), η(a∗)〉.

For N ≥ 3, SUq(N) does not have (GC), since there exist
non-hermitian Gaussian cocycles on SUq(N) (〈hj , hk〉 6= 〈hk , hj〉).
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Quantum subgroup chain

We have the chain of quantum subgroups

{e} = SUq(1) 6 SUq(2) 6 · · · 6 SUq(N) 6 · · ·

with the epimorphisms sn : SUq(n)→ SUq(n − 1), which is determined by

sn :


u11 · · · u1,n−1 u1n
...

. . .
...

...
un−1,1 · · · un−1,n−1 un−1,n
un1 · · · un,n−1 unn

 7−→


u11 · · · u1,n−1 0
...

. . .
...

...
un−1,1 · · · un−1,n−1 0

0 · · · 0 1



De�nition

We say that a linear map T : SUq(n)→ V lives on SUq(n − 1) if it
factors through sn, i.e. T = T̃ ◦ sn for some T̃ : SUq(n − 1)→ V .

For example, a rep π on SUq(N) lives on SUq(N − 1) i� π(uNN) = I .
Then necesarily, by the unitarity condition, π(ujN) = 0 = π(uNj) for j < N.
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LK-decomposition on SUq(N): non-Gaussian part

Take a Schürmann triple (π, η, ψ) on SUq(N) with π : SUq(N)→ B(H).

1 Space decomposition
The space LN := ker(id− π(uNN))⊥ is invariant, so H = LN ⊕ RN .

2 Decomposition of the representation
Accordingly, π = λ⊕ ρ.

λ(1− uNN) has trivial kernel, so it is injective;

ρ(uNN) = I , since ρ acts on RN = L⊥N = ker(id− π(uNN))

3 Decomposition of the cocycle
Let η = ηλ ⊕ ηρ with ηλ := PLN ◦ η, ηρ := PRN

◦ η.
ηρ(uNN) = 0

4 Ready for induction
We have the decomposition (π, η) = (λ, ηλ)⊕ (ρ, ηρ) and

ρ(uNN) = I implies ρ lives on SUq(N − 1).
ηρ(uNN) = 0 implies ηρ lives on SUq(N − 1).

If we complete (λ, ηλ), the induction may start.
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LK-decomposition on SUq(N): non-Gaussian part

4 ηλ is approximately inner
We know that λ(1− uNN) is injective. In this case, the value
h = ηλ(uNN) determines ηλ uniquely.
One shows that the limits on the RHS exist and it equals

ηλ(a) = lim
p→1

(
λ(a)− ε(a)id

)
(id− pλ(uNN))−1h︸ ︷︷ ︸

hp

5 Finding generating functional
Approximately inner cocylces are completable with

ψλ(a) := lim
p→1
〈hp, [π(a)− ε(a)I ]hp〉, a ∈ SUq(N).

So (λ, ηλ, ψλ) is a Schürmann triple.
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LK-decomposition on SUq(N): non-Gaussian part

Theorem

Any purely non-Gaussian pair (π, η) on SUq(N) can be completed to a
Schürmann triple (ρ, η, ψ) with

(π, η, ψ) = (π|HN
, ηN , ψN)⊕ · · · ⊕ (π|H2 , η2, ψ2),

where π|Hj
(1− ujj) is injective and π|Hj

as well as ηj lives on SUq(j).

Consequently, SUq(N) has (NC), hence admits a Lévy-Kchintchine type
decomposition.
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LK-decomposition on SUq(N)

Hunt formula for SUq(N) (FKLS)

For q ∈ (0, 1) and N ≥ 3 SUq(N) has the property (LK). Moreover, every
generating functional of a Lévy process on SUq(N) is of the form

ψ(a) =
N∑
j=2

rjε
′
j(a) +

N∑
j ,k=2

Bjkε
′′
jk(a) + lim

p→1

N∑
j=2

〈hj ,p, [πj(a)− ε(a)]hj ,p〉,

where rj ∈ R, B ∈ Mn(R) is positive de�nite and some net (hj ,p)p in H.

Note that hj ,p = (id− pπj(ujj))−1ηj(ujj).

Anna Wysocza«ska-Kula LK decomposition for SUq(N) 31 / 36



LK-decomposition on SUq(N)

Let π be a rep of SUq(N) on H such that π(1− uNN) is injective.
Which vectors in H may occur as values η(uNN) for a cocycle η?

Not every vector in H may occur as η(uNN) for a cocycle!
Take the ∞-dim irrep ρ of SUq(2) and de�ne ρ12 ? ρ23 on
`2(N)× `2(N). Then there is no cocycle with the value e0⊗ e0 on u33.

There are many vectors that do give rise to cocycles. More precisely,
any element h ∈ H0 := π(1− uNN)H determines a cocycle (which is
also a coboundary). H0 is a dense subspace of H.

The map

‖.‖π : h 7→

 N∑
j=1

‖π(1− ujj)h‖2
1/2

is a norm on H. Cauchy sequences w.r.t. ‖.‖π de�nes pointwise
converging coboundaries.
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LK-decomposition: SUq(2) vs. SUq(N) (N > 2)

SUq(2) has (GC), which is no longer true for N > 2

Any purely non-gaussian cocycle is a direct sum of N − 1
approximately inner cocylces living on smaller quantum subgroups.

Both algebras have (NC).

The parametrization space of purely non-gaussian cocycles (and the
related generating functionals) di�ers.

The Lévy-Khintchine decomposition exsits for both algebras.
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Does every ∗-bialgebra admit LK decomposition?

[YES] commutative ∗-bialgebras, Pol(G ) for a compact G (Schürmann'90)

[YES] the Brown algebra U〈d〉 (Schürmann'90)

[YES] SUq(2) (Schürmann, Skeide'98)

[ NO ] the group algebra of the fundamental group of an oriented surface of
genus k ≥ 2 (Franz, Gerhold, Thom'15)

[YES] the free permutation group S+n (Franz, AK, Skalski'16)

[YES] S+D := S+n /〈uD = Du〉 (include: quantum automorphism group of
graphs, quantum re�ection groups) (Bichon, Franz, Gerhold'17)

[YES] universal quantum groups U+
F and O+

F provided F ∗F has eigenvalues
of multiplicity 1 (Das, Franz, AK, Skalski'18)

[ NO ] U+
n (n ≥ 2) and O+

n (n ≥ 3) (Das, Franz, AK, Skalski'18)

[YES] SUq(N) and Uq(N), N ≥ 3, q ∈ (0, 1), have (LK) (Franz, AK,
Lindsay, Skeide'24?)
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Final remarks

General Problem: when a ∗-bialgebra admits a Levy-Khintchine
decomposition?

Observation: Neither the property (LK) nor its negations transfer to
quantum subgroups (quotients of algebras):

O+
2 (LK) ⊂ O

+
3 no (LK) ⊂ U〈3〉(LK).
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