JEDNOSTKA NAUKOWA KATEGORII A+

An alternative to Plancherel’s criterion for bilinear operators

Tom 119 / 2019

Loukas Grafakos Banach Center Publications 119 (2019), 173-179 MSC: 42B15, 42B20, 42B99. DOI: 10.4064/bc119-9

Streszczenie

We prove that bilinear operators associated with $L^q$ multipliers with sufficiently many derivatives in $L^\infty $ are bounded from $L^2\times L^2$ to $L^1$ when $q \lt 4$. In the absence of Plancherel’s identity on $L^1$, the range $q \lt 4$ in the bilinear case should be compared to $q=\infty $ in the classical $L^2\to L^2$ boundedness for linear multiplier operators.

Autorzy

  • Loukas GrafakosDepartment of Mathematics, University of Missouri
    Columbia MO 65211, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek