JEDNOSTKA NAUKOWA KATEGORII A+

A counterexample to the $L^{p}$-Hodge decomposition

Tom 33 / 1996

Piotr Hajłasz Banach Center Publications 33 (1996), 79-83 DOI: 10.4064/-33-1-79-83

Streszczenie

We construct a bounded domain $Ω ⊂ ℝ^2$ with the cone property and a harmonic function on Ω which belongs to $W_0^{1,p}(Ω)$ for all 1 ≤ p < 4/3. As a corollary we deduce that there is no $L^p$-Hodge decomposition in $L^{p}(Ω,ℝ^2)$ for all p > 4 and that the Dirichlet problem for the Laplace equation cannot be in general solved with the boundary data in $W^{1,p}(Ω)$ for all p > 4.

Autorzy

  • Piotr Hajłasz

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek