JEDNOSTKA NAUKOWA KATEGORII A+

On the differences of the consecutive powers of Banach algebra elements

Tom 38 / 1997

Helmuth Rönnefarth Banach Center Publications 38 (1997), 297-314 DOI: 10.4064/-38-1-297-314

Streszczenie

Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence ${x^{n}(x-1)}_{n ∈ ℕ}$ for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of ${x^{n}}_{n ∈ ℕ}$ and ${1/n ∑_{k=0}^{n-1} x^{k}}_{n ∈ ℕ}$.

Autorzy

  • Helmuth Rönnefarth

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek