JEDNOSTKA NAUKOWA KATEGORII A+

On the unique solvability of a nonlocal phase separation problem for multicomponent systems

Tom 66 / 2004

Jens A. Griepentrog Banach Center Publications 66 (2004), 153-164 MSC: Primary 35K45; Secondary 45K05, 47J35, 35D10. DOI: 10.4064/bc66-0-10

Streszczenie

A nonlocal model of phase separation in multicomponent systems is presented. It is derived from conservation principles and minimization of free energy containing a nonlocal part due to particle interaction. In contrast to the classical Cahn–Hilliard theory with higher order terms this leads to an evolution system of second order parabolic equations for the particle densities, coupled by nonlinear and nonlocal drift terms, and state equations which involve both chemical and interaction potential differences. Applying fixed-point arguments and comparison principles we prove the existence of variational solutions in standard Hilbert spaces for evolution systems. Moreover, using some regularity theory for parabolic boundary value problems in Hölder spaces we get the unique solvability of our problem. We conclude our considerations with the presentation of simulation results for a ternary system.

Autorzy

  • Jens A. GriepentrogWeierstrass Institute of Applied Analysis and Stochastics
    Mohrenstrasse 39, D-12559 Berlin, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek