JEDNOSTKA NAUKOWA KATEGORII A+

On Bressan's conjecture on mixing properties of vector fields

Tom 74 / 2006

Stefano Bianchini Banach Center Publications 74 (2006), 13-31 MSC: 35F25. DOI: 10.4064/bc74-0-1

Streszczenie

In [9], the author considers a sequence of invertible maps $\mathbf T_i : S^1 \to S^1$ which exchange the positions of adjacent intervals on the unit circle, and defines as $A_n$ the image of the set $\{0 \leq x \leq 1/2\}$ under the action of $\mathbf T_n \circ \dots \circ \mathbf T_1$, $$ A_n = ( \mathbf T_n \circ \dots \circ \mathbf T_1 ) \{ x_1 \leq 1/2 \}.\tag1$$ Then, if $A_n$ is mixed up to scale $h$, it is proved that $$\sum_{i=1}^n ( \hbox{Tot.Var.}(\mathbf T_i-{\bf I}) + \hbox{Tot.Var.}(\mathbf T_i^{-1}-{\bf I}) ) \geq C \log \frac{1}{h}.\tag2$$ We prove that (1) holds for general quasi incompressible invertible BV maps on $\mathbb R$, and that this estimate implies that the map $\mathbf T_n \circ \dots \circ \mathbf T_1$ belongs to the Besov space $B^{0,1,1}$, and its norm is bounded by the sum of the total variation of $\mathbf T-{\bf I}$ and $\mathbf T^{-1}-{\bf I}$, as in (2).

Autorzy

  • Stefano BianchiniSISSA-ISAS
    via Beirut 2-4, I-34014
    Trieste
    Italy
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek