JEDNOSTKA NAUKOWA KATEGORII A+

Optimal convergence results for the Brezzi-Pitkäranta approximation of the Stokes problem: Exterior domains

Tom 81 / 2008

Serguei A. Nazarov, Maria Specovius-Neugebauer Banach Center Publications 81 (2008), 297-320 MSC: Primary 76D07; Secondary 35Q30. DOI: 10.4064/bc81-0-20

Streszczenie

This paper deals with a strongly elliptic perturbation for the Stokes equation in exterior three-dimensional domains $\Omega$ with smooth boundary. The continuity equation is substituted by the equation $-\varepsilon^2\Delta p + \mathop{\rm div} u =0$, and a Neumann boundary condition for the pressure is added. Using parameter dependent Sobolev norms, for bounded domains and for sufficiently smooth data we prove $H^{5/2-\delta}$ convergence for the velocity part and $H^{3/2-\delta}$ convergence for the pressure to the solution of the Stokes problem, with $\delta$ arbitrarily close to~$0$. For an exterior domain the asymptotic behavior at infinity of the solutions to both problems has also to be taken into account. Although the usual Kondratiev theory cannot be applied to the perturbed problem, it is shown that the asymptotics of the solutions to the exterior Stokes problem and the solution to the perturbed problem coincide completely. For sufficiently smooth data an appropriate decay leads to the convergence of all main asymptotic terms as well as convergence in $H^{5/2-\delta}_{loc}$ and $H^{3/2-\delta}_{loc}$, respectively, of the remainder to the corresponding parts of the Stokes solution.

Autorzy

  • Serguei A. NazarovInstitute of Mechanical
    Engineering Problems
    V.O. Bol'shoy Pr. 61, 199178
    St. Petersburg, Russia
    e-mail
  • Maria Specovius-NeugebauerFachbereich 17, Mathematik/Informatik
    Universität Kassel
    D-34109 Kassel, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek