JEDNOSTKA NAUKOWA KATEGORII A+

Characterization of surjective convolution operators on Sato's hyperfunctions

Tom 88 / 2010

Michael Langenbruch Banach Center Publications 88 (2010), 185-193 MSC: Primary 46F15; Secondary 46N20, 44A35. DOI: 10.4064/bc88-0-15

Streszczenie

Let $\mu\in \mathcal{A}(\mathbb{R}^{d})'$ be an analytic functional and let $T_\mu$ be the corresponding convolution operator on Sato's space $\mathcal{B}(\mathbb{R}^{d})$ of hyperfunctions. We show that $T_\mu$ is surjective iff $T_\mu$ admits an elementary solution in $\mathcal{B}(\mathbb{R}^{d})$ iff the Fourier transform $\widehat{\mu}$ satisfies Kawai's slowly decreasing condition $(S)$. We also show that there are $0\neq\mu\in \mathcal{A}(\mathbb{R}^{d})'$ such that $T_\mu$ is not surjective on $\mathcal{B}(\mathbb{R}^{d})$.

Autorzy

  • Michael LangenbruchDepartment of Mathematics
    University of Oldenburg
    26111 Oldenburg, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek