JEDNOSTKA NAUKOWA KATEGORII A+

On some generalization of the $t$-transformation

Tom 89 / 2010

Anna Dorota Krystek Banach Center Publications 89 (2010), 165-187 MSC: Primary 46L53, 46L54; Secondary 60E10. DOI: 10.4064/bc89-0-10

Streszczenie

Using the Nevanlinna representation of the reciprocal of the Cauchy transform of probability measures, we introduce a two-parameter transformation $U^{\mathbb T}$ of probability measures on the real line $\mathbb{R}$, which is another possible generalization of the $t$-transformation. Using that deformation we define a new convolution by deformation of the free convolution. The central limit measure with respect to the $\mathbb{T}$-deformed free convolutions is still a Kesten measure, but the Poisson limit depends on the two parameters and is different from the Poisson measures for $(a,b)$-deformation. We also show that the $\mathbb{T}$-deformed free convolution is different from the convolution obtained as the deformed conditionally free convolution of Bożejko, Leinert and Speicher. Thus the $\mathbb{T}$ does not satisfy the Bożejko property.

Autorzy

  • Anna Dorota KrystekMathematical Institute
    University of Wrocław
    Pl. Grunwaldzki 2/4
    50-384 Wrocław, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek