A review of selected topics in majorization theory
Tom 99 / 2013
Streszczenie
In this expository paper, some recent developments in majorization theory are reviewed. Selected topics on group majorizations, group-induced cone orderings, Eaton triples, normal decomposition systems and similarly separable vectors are discussed. Special attention is devoted to majorization inequalities. A unified approach is presented for proving majorization relations for eigenvalues and singular values of matrices. Some methods based on the Chebyshev functional and similarly separable vectors are described. Generalizations of Hardy–Littlewood–Pólya Theorem and Schur–Ostrowski Theorem are presented. Generalized Schur-convex functions are investigated. Extensions of Ky Fan inequalities are provided. Applications to Grüss and Ostrowski type inequalities are given.