Primes in arithmetic progressions to spaced moduli. III
Tom 179 / 2017
Acta Arithmetica 179 (2017), 125-132
MSC: Primary 11N13.
DOI: 10.4064/aa8401-5-2017
Opublikowany online: 7 July 2017
Streszczenie
Let \[E(x,q) = \max_{(a,q) = 1} \biggl| \sum_{\substack{n \le x\\ n \equiv a\, ({\rm mod}\, q)}} \Lambda(n) - \frac x{\phi(q)}\biggr|.\] We show that, for $S$ the set of squares, \[\sum_{\substack{q \in S\\ Q \lt q \le 2Q}} E(x, q) \ll_{A,\varepsilon} x Q^{-1/2}(\log x)^{-A} \] for $\varepsilon \gt 0$, $A \gt 0$, and $Q \le x^{1/2-\varepsilon}$. This improves a theorem of the author.