JEDNOSTKA NAUKOWA KATEGORII A+

Coincidence of $L$-functions

Tom 204 / 2022

Yuta Katayama, Masanari Kida Acta Arithmetica 204 (2022), 369-385 MSC: Primary 11R42; Secondary 11R32, 11R21, 12F12. DOI: 10.4064/aa211012-14-6 Opublikowany online: 8 August 2022

Streszczenie

By the coincidence of $L$-functions, we mean an incident that the Hecke $L$-functions of ray class groups of several different fields coincide up to a finite number of Euler factors. This phenomenon was first observed by Hecke in 1925 for the case of quadratic fields. In this paper, we give a condition for the coincidence in the case of cyclic fields of prime degree in terms of Galois groups of certain abelian extension of the cyclic fields.

Autorzy

  • Yuta KatayamaDepartment of Mathematics
    Tokyo University of Science
    1-3 Kagurazaka Shinjuku
    Tokyo 162-8601, Japan
    e-mail
  • Masanari KidaDepartment of Mathematics
    Tokyo University of Science
    1-3 Kagurazaka Shinjuku
    Tokyo 162-8601, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek