JEDNOSTKA NAUKOWA KATEGORII A+

Iwasawa cohomology of analytic $(\varphi_L,{\varGamma}_L)$-modules

Rustam Steingart Acta Arithmetica MSC: Primary 11F80; Secondary 11R23 DOI: 10.4064/aa230512-1-7 Opublikowany online: 18 September 2024

Streszczenie

We show that the coadmissibility of the Iwasawa cohomology of an $L$-analytic Lubin–Tate $(\varphi_L,\Gamma_L)$-module $M$ is necessary and sufficient for the existence of a comparison isomorphism between the former and the analytic cohomology of its Lubin–Tate deformation, which, roughly speaking, is given by the base change of $M$ to the algebra of $L$-analytic distributions. We verify that coadmissibility is satisfied in the trianguline case and show that it can be “propagated” to a reasonably large class of modules, provided it can be proven in the étale case.

Autorzy

  • Rustam SteingartMathematisches Institut
    Ruprecht-Karls-Universität Heidelberg
    D-69120 Heidelberg, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek