JEDNOSTKA NAUKOWA KATEGORII A+

Improved conjugate gradient methods and application to nonparametric estimation

Abd Elhamid Mehamdia, Yacine Chaib Applicationes Mathematicae MSC: Primary 90C30; Secondary 65K05, 62G05 DOI: 10.4064/am2512-6-2024 Opublikowany online: 26 August 2024

Streszczenie

The conjugate gradient (CG) method is one of the most important ideas in scientific computing, applied to solving linear systems of equations and nonlinear optimization problems. In this paper, based on a variant of Dai–Yuan (DY) method and Fletcher–Reeves (FR) method, two modified CG methods (named IDY and IFR) are presented and analyzed. The search direction of the presented methods fulfills the sufficient descent condition at each iteration. We establish the global convergence of the proposed algorithms under normal assumptions and strong Wolfe line search. Preliminary elementary numerical experiment results are presented, demonstrating the effectiveness of the methods. Finally, the methods are extended to solve the problem of conditional model regression function.

Autorzy

  • Abd Elhamid MehamdiaLaboratory Informatics and Mathematics
    Mohamed Cherif Messaadia University
    Souk Ahras, 41000, Algeria
    e-mail
  • Yacine ChaibLaboratory Informatics and Mathematics
    Mohamed Cherif Messaadia University
    Souk Ahras, 41000, Algeria
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek