JEDNOSTKA NAUKOWA KATEGORII A+

On $pq$-hyperelliptic Riemann surfaces

Tom 103 / 2005

Ewa Tyszkowska Colloquium Mathematicum 103 (2005), 115-120 MSC: Primary 30F10; Secondary 20H10. DOI: 10.4064/cm103-1-12

Streszczenie

A compact Riemann surface $X$ of genus $g>1$ is said to be $p$-hyperelliptic if $X$ admits a conformal involution $\varrho$, called a $p$-hyperelliptic involution, for which $X/\varrho$ is an orbifold of genus $p$. If in addition $X$ admits a $q$-hypereliptic involution then we say that $X$ is $pq$-hyperelliptic. We give a necessary and sufficient condition on $p,q$ and $g$ for existence of a $pq$-hyperelliptic Riemann surface of genus $g$. Moreover we give some conditions under which $p$- and $q$-hyperelliptic involutions of a $pq$-hyperelliptic Riemann surface commute or are unique.

Autorzy

  • Ewa TyszkowskaInstitute of Mathematics
    University of Gdańsk
    Wita Stwosza 57
    80-952 Gdańsk, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek