JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Identities for like-powers of Lucas sequences from algebraic identities

Tom 149 / 2017

Curtis Cooper Colloquium Mathematicum 149 (2017), 165-177 MSC: Primary 11B39; Secondary 11B37. DOI: 10.4064/cm7051-9-2016 Opublikowany online: 8 May 2017

Streszczenie

Let $a$ and $b$ be integers with $b(a^2+4b) \ne 0$. Let $u_0 = 0$, $u_1 = 1$, and $u_n = a u_{n-1} + b u_{n-2}$ for $n \ge 2$. Let $v_0 = 2$, $v_1 = a$, and $v_n = a v_{n-1} + b v_{n-2}$ for $n \ge 2$. Using algebraic identities we will prove some results, including the following ones. For integers $n \ge 0$ and $k \ge 1$, \begin{align*} u_{n+3k}^2 &= (v_{2k} + (-b)^k) u_{n+2k}^2 - (-b)^k (v_{2k} + (-b)^k) u_{n+k}^2 + (-b)^{3k} u_n^2 \\%[4pt] v_{n+3k}^2 &= (v_{2k} + (-b)^k) v_{n+2k}^2 - (-b)^k (v_{2k} + (-b)^k) v_{n+k}^2 + (-b)^{3k} v_n^2 \\%[4pt] u_{n+4k}^3 &= (v_{3k} + (-b)^k v_k) u_{n+3k}^3 - (-b)^k (v_{4k} + (-b)^k v_{2k} + 2 (-b)^{2k}) u_{n+2k}^3 \\%[4pt] &\quad + (-b)^{3k} (v_{3k} + (-b)^k v_k) u_{n+k}^3 - (-b)^{6k} u_n^3 \\%[4pt] v_{n+4k}^3 &= (v_{3k} + (-b)^k v_k) v_{n+3k}^3 - (-b)^k (v_{4k} + (-b)^k v_{2k} + 2 (-b)^{2k}) v_{n+2k}^3 \\%[4pt] &\quad + (-b)^{3k} (v_{3k} + (-b)^k v_k) v_{n+k}^3 - (-b)^{6k} v_n^3 . \end{align*} These results generalize some results of Gould (1963), Zeitlin and Parker (1963), Bicknell (1972), and Prodinger (1997).

Autorzy

  • Curtis CooperDepartment of Mathematics and Computer Science
    University of Central Missouri
    Warrensburg, MO 64093, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek