JEDNOSTKA NAUKOWA KATEGORII A+

On uncountable collections of continua and their span

Tom 69 / 1996

Dušan Repovš, Arkadij Skopenkov, Evgenij Ščepin Colloquium Mathematicum 69 (1996), 289-296 DOI: 10.4064/cm-69-2-289-296

Streszczenie

We prove that if the Euclidean plane $ℝ^2$ contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree $X ⊂ ℝ^2$ such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.

Autorzy

  • Dušan Repovš
  • Arkadij Skopenkov
  • Evgenij Ščepin

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek