JEDNOSTKA NAUKOWA KATEGORII A+

Asymptotics of sums of subcoercive operators

Tom 82 / 1999

Nick Dungey, A. ter Elst, Derek Robinson Colloquium Mathematicum 82 (1999), 231-260 DOI: 10.4064/cm-82-2-231-260

Streszczenie

We examine the asymptotic, or large-time, behaviour of the semigroup kernel associated with a finite sum of homogeneous subcoercive operators acting on a connected Lie group of polynomial growth. If the group is nilpotent we prove that the kernel is bounded by a convolution of two Gaussians whose orders correspond to the highest and lowest orders of the homogeneous subcoercive components of the generator. Moreover we establish precise asymptotic estimates on the difference of the kernel and the kernel corresponding to the lowest order homogeneous component. We also prove boundedness of a range of Riesz transforms with the range again determined by the highest and lowest orders. Finally we analyze similar properties on general groups of polynomial growth and establish positive results for local direct products of compact and nilpotent groups.

Autorzy

  • Nick Dungey
  • A. ter Elst
  • Derek Robinson

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek