JEDNOSTKA NAUKOWA KATEGORII A+

Applications of the Kantorovich–Rubinstein maximum principle in the theory of Markov semigroups

Tom 448 / 2007

Henryk Gacki Dissertationes Mathematicae 448 (2007), 1-59 MSC: Primary 37A30, 47D03, 60J25; Secondary 28A33, 28A80, 60J75, 45K05. DOI: 10.4064/dm448-0-1

Streszczenie

We present new sufficient conditions for the asymptotic stability of Markov operators acting on the space of signed measures. Our results are based on two principles. The first one is the LaSalle invariance principle used in the theory of dynamical systems. The second is related to the Kantorovich–Rubinstein theorems concerning the properties of probability metrics. These criteria are applied to stochastically perturbed dynamical systems, a Poisson driven stochastic differential equation and a mathematical model of the cell cycle. Moreover, we discuss the problem of the asymptotic stability of solutions of a generalized version of the Tjon–Wu equation.

Autorzy

  • Henryk GackiInstitute of Mathematics
    Silesian University
    Bankowa 14
    40-007 Katowice, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek