JEDNOSTKA NAUKOWA KATEGORII A+

An extension of a theorem of Marcinkiewicz and Zygmund on differentiability

Tom 151 / 1996

S. Mukhopadhyay, S. Mitra Fundamenta Mathematicae 151 (1996), 21-38 DOI: 10.4064/fm-151-1-21-38

Streszczenie

Let f be a measurable function such that $Δ_k(x,h;f) = O(|h|^λ)$ at each point x of a set E, where k is a positive integer, λ > 0 and $Δ_k(x,h;f)$ is the symmetric difference of f at x of order k. Marcinkiewicz and Zygmund [5] proved that if λ = k and if E is measurable then the Peano derivative $f_{(k)}$ exists a.e. on E. Here we prove that if λ > k-1 then the Peano derivative $f_{([λ])}$ exists a.e. on E and that the result is false if λ = k-1; it is further proved that if λ is any positive integer and if the approximate Peano derivative $f_{(λ),a}$ exists on E then $f_{(λ)}$ exists a.e. on E.

Autorzy

  • S. Mukhopadhyay
  • S. Mitra

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek