JEDNOSTKA NAUKOWA KATEGORII A+

On admissibility for parabolic equations in ${\Bbb R}^n$

Tom 176 / 2003

Martino Prizzi Fundamenta Mathematicae 176 (2003), 261-275 MSC: 37B30, 35K57, 35J60. DOI: 10.4064/fm176-3-5

Streszczenie

We consider the parabolic equation $$ u_t-{\mit \Delta } u=F(x,u), \hskip 1em \ (t,x)\in {{\mathbb R}}_+\times {{\mathbb R}}^n, \tag{P} $$ and the corresponding semiflow $\pi $ in the phase space $H^1$. We give conditions on the nonlinearity $F(x,u)$, ensuring that all bounded sets of $H^1$ are $\pi $-admissible in the sense of Rybakowski. If $F(x,u)$ is asymptotically linear, under appropriate non-resonance conditions, we use Conley's index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained extend earlier results of Rybakowski concerning parabolic equations on bounded open subsets of ${{\mathbb R}}^n$.

Autorzy

  • Martino PrizziDipartimento di Scienze Matematiche
    Università degli Studi di Trieste
    via Valerio 12
    34127 Trieste, Italy
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek