JEDNOSTKA NAUKOWA KATEGORII A+

Minimality of non-$\sigma$-scattered orders

Tom 205 / 2009

Tetsuya Ishiu, Justin Tatch Moore Fundamenta Mathematicae 205 (2009), 29-44 MSC: 03E05, 03E75, 06A05. DOI: 10.4064/fm205-1-2

Streszczenie

We will characterize—under appropriate axiomatic assumptions—when a linear order is minimal with respect to not being a countable union of scattered suborders. We show that, assuming ${\rm PFA}^+$, the only linear orders which are minimal with respect to not being $\sigma$-scattered are either Countryman types or real types. We also outline a plausible approach to demonstrating the relative consistency of: There are no minimal non-$\sigma$-scattered linear orders. In the process of establishing these results, we will prove combinatorial characterizations of when a given linear order is $\sigma$-scattered and when it contains either a real or Aronszajn type.

Autorzy

  • Tetsuya IshiuDepartment of Mathematics and Statistics
    Miami University
    Oxford, OH 45056, U.S.A.
    e-mail
  • Justin Tatch MooreDepartment of Mathematics
    Cornell University
    310 Malott Hall
    Ithaca, NY 14853-4201, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek