Zawartość tomu 213
-
Hausdorff dimension of scale-sparse Weierstrass-type functions Fundamenta Mathematicae 213 (2011), 1-13 MSC: 28A80, 28A78. DOI: 10.4064/fm213-1-1
-
Multiple gaps Fundamenta Mathematicae 213 (2011), 15-42 MSC: 03E05, 03E15, 03E50, 03E75, 46B26. DOI: 10.4064/fm213-1-2
-
On biorthogonal systems whose functionals are finitely supported Fundamenta Mathematicae 213 (2011), 43-66 MSC: Primary 46B26; Secondary 03E35, 54D80. DOI: 10.4064/fm213-1-3
-
Generating countable sets of surjective functions Fundamenta Mathematicae 213 (2011), 67-93 MSC: Primary 20M20; Secondary 03E05. DOI: 10.4064/fm213-1-4
-
Realization of fixed point sets of relative maps Fundamenta Mathematicae 213 (2011), 95-113 MSC: Primary 55M20. DOI: 10.4064/fm213-2-1
-
Orbit spaces, Quillen's Theorem A and Minami's formula for compact Lie groups Fundamenta Mathematicae 213 (2011), 115-167 MSC: 55R35, 55N91, 55U40, 22E99. DOI: 10.4064/fm213-2-2
-
Conformal actions with prescribed periods on Riemann surfaces Fundamenta Mathematicae 213 (2011), 169-190 MSC: Primary 30F10; Secondary 30F35, 37E30, 14H37. DOI: 10.4064/fm213-2-3
-
Preservation of the Borel class under open-$LC$ functions Fundamenta Mathematicae 213 (2011), 191-195 MSC: Primary 54C10; Secondary 54H05, 54E40, 03E15. DOI: 10.4064/fm213-2-4
-
Well-quasi-ordering Aronszajn lines Fundamenta Mathematicae 213 (2011), 197-211 MSC: Primary 03-xx; Secondary 06B30, 06F30. DOI: 10.4064/fm213-3-1
-
Covering the real line with translates of a zero-dimensional compact set Fundamenta Mathematicae 213 (2011), 213-219 MSC: Primary 28A78; Secondary 03E17, 03E35. DOI: 10.4064/fm213-3-2
-
A Cantor set in the plane that is not $\sigma$-monotone Fundamenta Mathematicae 213 (2011), 221-232 MSC: 54F05, 28A78, 28A80. DOI: 10.4064/fm213-3-3
-
Topological compactifications Fundamenta Mathematicae 213 (2011), 233-253 MSC: Primary 54D35; Secondary 54C20. DOI: 10.4064/fm213-3-4
-
A Hanf number for saturation and omission Fundamenta Mathematicae 213 (2011), 255-270 MSC: 03C52, 03C85. DOI: 10.4064/fm213-3-5
-
An integral formula for entropy of doubly stochastic operators Fundamenta Mathematicae 213 (2011), 271-289 MSC: Primary 28D20; Secondary 47A35. DOI: 10.4064/fm213-3-6
-
Erratum to “Minimal sets of non-resonant torus homeomorphisms” (Fund. Math. 211 (2011), 41–76) Fundamenta Mathematicae 213 (2011), 291 MSC: Primary 37B99; Secondary 37B45. DOI: 10.4064/fm213-3-7