JEDNOSTKA NAUKOWA KATEGORII A+

A simultaneous selection theorem

Tom 219 / 2012

Alexander D. Arvanitakis Fundamenta Mathematicae 219 (2012), 1-14 MSC: Primary 54C65, 54C20; Secondary 46B03. DOI: 10.4064/fm219-1-1

Streszczenie

We prove a theorem that generalizes in a way both Michael's Selection Theorem and Dugundji's Simultaneous Extension Theorem. We use it to prove that if $K$ is an uncountable compact metric space and $X$ a Banach space, then $C(K, X)$ is isomorphic to $C(\mathcal{C}, X)$ where $\mathcal{C}$ denotes the Cantor set. For $X=\mathbb{R}$, this gives the well known Milyutin Theorem.

Autorzy

  • Alexander D. ArvanitakisDepartment of Mathematics
    National Technical University of Athens
    15780 Athens, Greece
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek