JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Structurable equivalence relations

Tom 242 / 2018

Ruiyuan Chen, Alexander S. Kechris Fundamenta Mathematicae 242 (2018), 109-185 MSC: Primary 03E15. DOI: 10.4064/fm428-7-2017 Opublikowany online: 1 March 2018

Streszczenie

For a class $\mathcal K$ of countable relational structures, a countable Borel equivalence relation $E$ is said to be $\mathcal K$-structurable if there is a Borel way to put a structure in $\mathcal K$ on each $E$-equivalence class. We study in this paper the global structure of the classes of $\mathcal K$-structurable equivalence relations for various $\mathcal K$. We show that $\mathcal K$-structurability interacts well with several kinds of Borel homomorphisms and reductions commonly used in the classification of countable Borel equivalence relations. We consider the poset of classes of $\mathcal K$-structurable equivalence relations for various $\mathcal K$, under inclusion, and show that it is a distributive lattice; this implies that the Borel reducibility preordering among countable Borel equivalence relations contains a large sublattice. Finally, we consider the effect on $\mathcal K$-structurability of various model-theoretic properties of $\mathcal K$. In particular, we characterize the $\mathcal K$ such that every $\mathcal K$-structurable equivalence relation is smooth, answering a question of Marks.

Autorzy

  • Ruiyuan ChenDepartment of Mathematics
    California Institute of Technology
    Pasadena, CA 91125, U.S.A.
    e-mail
  • Alexander S. KechrisDepartment of Mathematics
    California Institute of Technology
    Pasadena, CA 91125, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek