JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Special groups and quadratic forms over rings with non-zero-divisor coefficients

Tom 258 / 2022

M. Dickmann, F. Miraglia, H. Ribeiro Fundamenta Mathematicae 258 (2022), 153-209 MSC: Primary 11E81, 03C65, 18B35; Secondary 06E99, 16G30, 12D15, 46E25. DOI: 10.4064/fm137-12-2021 Opublikowany online: 14 April 2022

Streszczenie

We present an algebraic theory of diagonal quadratic forms with non-zero-divisor coefficients over preordered (commutative, unitary) rings $\langle A,T\rangle $, where $2$ is invertible and the preorder $T$ satisfies a mild additional requirement. We prove that several major results known to hold in the classical theory of quadratic forms over fields, like the Arason–Pfister Hauptsatz and Pfister’s local-global principle, carry over to any class of preordered rings satisfying a property of ${\mathfrak N}T$-quadratic faithfulness, a notion central to our results. We prove that this property holds, and hence the above-mentioned results are valid, for many classes of rings frequently met in practice, such as (i) reduced $f$-rings and some of their extensions, for which Marshall’s signature conjecture and a vast generalization of Sylvester’s inertia law are also true; and (ii) reduced partially ordered Noetherian rings and many of their quotients (a result of interest in real algebraic geometry). This paper provides a broad extension of the theory developed in [M. Dickmann and F. Miraglia, Mem. Amer. Math. Soc. 238 (2015), no. 1128] and of the methods employed therein.

Autorzy

  • M. DickmannInstitut de Mathématiques de Jussieu
    – Paris Rive Gauche
    CNRS, Sorbonne Université
    Université de Paris
    Bâtiment Sophie Germain
    Place Aurélie Nemours
    75013 Paris, France
    e-mail
  • F. MiragliaInstitute of Mathematics and Statistics
    University of São Paulo
    Rua do Matão, 1010, CEP 05508-090
    São Paulo, S.P., Brazil
    e-mail
  • H. RibeiroInstitute of Mathematics and Statistics
    University of São Paulo
    Rua do Matão, 1010, CEP 05508-090
    São Paulo, S.P., Brazil
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek