Zawartość tomu 260
-
Strong orbit equivalence in Cantor dynamics and simple locally finite groups Fundamenta Mathematicae 260 (2023), 1-20 MSC: Primary 37B02; Secondary 03E15. DOI: 10.4064/fm227-7-2022
-
Covering versus partitioning with Polish spaces Fundamenta Mathematicae 260 (2023), 21-39 MSC: Primary 54E35; Secondary 03E05, 03E55. DOI: 10.4064/fm28-5-2022
-
Filters on a countable vector space Fundamenta Mathematicae 260 (2023), 41-58 MSC: Primary 03E05; Secondary 15A03. DOI: 10.4064/fm197-5-2022
-
The Keisler–Shelah isomorphism theorem and the continuum hypothesis Fundamenta Mathematicae 260 (2023), 59-66 MSC: Primary 03C20; Secondary 03E35. DOI: 10.4064/fm198-5-2022
-
On a conjecture of Debs and Saint Raymond Fundamenta Mathematicae 260 (2023), 67-76 MSC: Primary 03E05; Secondary 03E15, 54H05, 26A03. DOI: 10.4064/fm111-5-2022
-
Mixing and double recurrence in probability groups Fundamenta Mathematicae 260 (2023), 77-98 MSC: Primary 37A15; Secondary 22D40, 22F10, 03C20, 05E16, 28C10, 37A25, 20A15. DOI: 10.4064/fm225-7-2022
-
Countable ordinals in indiscernibility spectra Fundamenta Mathematicae 260 (2023), 99-109 MSC: Primary 03E10; Secondary 03E15, 03E45, 03F15. DOI: 10.4064/fm964-6-2022
-
Difference sheaves and torsors Fundamenta Mathematicae 260 (2023), 111-161 MSC: Primary 12H10; Secondary 18F20, 20G10. DOI: 10.4064/fm66-8-2022
-
Translation invariant linear spaces of polynomials Fundamenta Mathematicae 260 (2023), 163-179 MSC: Primary 32A08; Secondary 13C05. DOI: 10.4064/fm140-10-2022
-
A note on highly connected and well-connected Ramsey theory Fundamenta Mathematicae 260 (2023), 181-197 MSC: Primary 03E02; Secondary 03E35, 05C63. DOI: 10.4064/fm141-9-2022
-
Filtration games and potentially projective modules Fundamenta Mathematicae 260 (2023), 199-232 MSC: Primary 03E35; Secondary 03E57, 03E75, 16D40. DOI: 10.4064/fm237-10-2022
-
Rotated odometers and actions on rooted trees Fundamenta Mathematicae 260 (2023), 233-249 MSC: Primary 37A05; Secondary 37E05, 28D05, 37B05, 37E25. DOI: 10.4064/fm74-10-2022
-
Type-definable NIP fields are Artin–Schreier closed Fundamenta Mathematicae 260 (2023), 251-261 MSC: Primary 03C60; Secondary 03C45. DOI: 10.4064/fm149-8-2022
-
Recurrence, rigidity, and shadowing in dynamical systems Fundamenta Mathematicae 260 (2023), 263-279 MSC: Primary 37B20; Secondary 37B65, 37B45. DOI: 10.4064/fm184-10-2022
-
On resolvability of products Fundamenta Mathematicae 260 (2023), 281-295 MSC: Primary 54A25; Secondary 54A35, 03E35, 03E55. DOI: 10.4064/fm244-10-2022