Sur une propriété des fonctions semi-continues
Tom 9 / 1927
Fundamenta Mathematicae 9 (1927), 1-2
DOI: 10.4064/fm-9-1-1-2
Streszczenie
Le but de cette note est de démontrer un théorème sur les fonctions semi-continues, dont un corollaire immédiat peut être regarde comme une généralisation du théorème bien connu d'après lequel toute fonction continue dans un intervalle fini est uniformément continue dans cet intervalle. Théorème: ϕ(x) etant une fonction semi-continue supérierurement dans un intervalle fini (a,b) et φ(x) etant une fonction semi-continue intérieurement dans (a,b), telles que ϕ(x) < φ(x) pour a ≤ x ≤ b, il existe un nombre positif δ, tel que pour tous les nombres x et x' de (a,b) l'inegalite |x-x'| ≤ δ entraîne l'inégalité ϕ (x) < φ (x) - δ.