Title: On the Bekollé-Bonami weights on general domains in \mathbb{R}^n

Abstract: In a seminal paper in 1978, Bekollé and Bonami introduced in the unit disc \mathbb{D} the notion of the so called B_p -weights. A weight ω defined on \mathbb{D} is called a B_p -weight, 1 , if

$$\sup\left(\frac{1}{|Q_I|}\int_{Q_I}\omega\right)\left(\frac{1}{|Q_I|}\int_{Q_I}\omega^{\frac{-1}{p-1}}\right)^{p-1}<\infty,$$

where Q_I denotes the *Carleson box* associated to the arc $I \subset \partial \mathbb{D}$.

Such weights naturally appeared when studying weighted Lebesgue space estimates for the Bergman projection. The Bergman projection P_B , given by

$$P_B f(z) = \frac{1}{\pi} \int_{\mathbb{D}} \frac{f(\xi)}{(1 - \bar{\xi}z)^2} dm(\xi),$$

is the orthogonal projection from $L^2(\mathbb{D}, dm)$ onto the Bergman space $A^2(\mathbb{D})$ which is the set of analytic functions in $L^2(\mathbb{D}, dm)$. Bekollé and Bonami proved that the Bergman projection P_B is bounded on the weighted space $L^p(\mathbb{D}; \omega dm), 1 if and only if <math>\omega$ is a B_p -weight.

The purpose of this talk is to extend the definition of Bekollé-Bonami weights to domains in \mathbb{R}^n , $n \geq 2$, investigate their properties and establish Carleson-type embedding theorems analogous to the ones existing in the classical setting. It turns out that, in this context, the geometry of the domain plays a decisive role.