Javier de Lucas Araujo
Visiting Professor at the Institute of mathematics of the Polish Academy of Sciences (IMPAN)
Department of Differential Geometry and Mathematical Physics
Ul. Sniadeckich 8, P.O. Box 21 00-956 Warszawa, POLAND.
Fields of Interes
Geometric Methods in Mathematics and Physics.
Contact, Symplectic, Poisson and Dirac Geometry.
Geometry of differential equations.
Discrete Vakonomic Mechanics.
Supermanifolds.
Collaborators
J.F. Cariñena Marzo
J. Grabowski
Y.M. Vorobjev
R. Flores-Espinoza
M.F. Rañada
A. Ramos
G. Marmo
F. Avram
C. Sardón
P.L García
P. Guha
A. Ballesteros
F.J. Herranz
Publications
-
J. Grabowski and J. de Lucas,
Mixed superposition rules and the Riccati hierarchy.
To appear in J. Diff. Equ. (2012).
[Arxiv]
-
J.F. Cariñena, J. de Lucas and J. Grabowski,
Superposition rules, higher-order systems and their applications,
J. Phys. A: Math. Theor. 45, 185202 (2012).
[Arxiv]
-
J.F. Cariñena, J. de Lucas and M.F. Rañada,
Un enfoque geometrico de las ecuaciones diferenciales de Abel de primera y segunda clase,
Actas del XI Congreso del Dr. Antonio Monteiro 2011, 63--82 (2012).
-
J.F. Cariñena, J. de Lucas and C. Sardón,
A new Lie systems approach to second-order Riccati equations,
Int. J. Geom. Methods Mod. Phys. 9, 1260007 (2012).
[Arxiv]
[MathSci]
-
J.F. Cariñena and J. de Lucas,
Superposition rules and second-order Riccati equations,
J. Geom. Mech. 3, 1--22, 2011.
[Arxiv]
[MathScinet]
-
J.F. Cariñena and J. de Lucas,
Lie systems: theory, generalizations, and applications,
Dissertationes Math. 479, 2011.
-
J.F. Cariñena and J. de Lucas,
Superposition rules and second-order differential equations, in the book:
XIX International Fall Workshop on Geometry and Physics, AIP Conference Proceedings 1360, American Institute of Mathematics, 2011, 127--132.
[Arxiv]
-
P.G. Estevez, M.L. Gandarias and J. de Lucas,
Classical Lie symmetries and reductions of a nonisospectral Lax pair,
J. Nonlinear Math. Phys. 18, 51--60 (2011).
[Arxiv]
[MathScinet]
-
J.F. Cariñena and J. de Lucas,
Integrability of Lie systems through Riccati equations,
J. Nonl. Math. Phys. 18, 29--54 (2011).
[Arxiv]
[MathScinet]
-
J.F. Cariñena, J. de Lucas and M.F. Rañada,
A geometric approach to integrability of Abel differential equations,
Int. J. Theor. Phys. 50, 2114-2124 (2011).
[Arxiv]
[MathScinet]
-
F. Avram, J.F. Cariñena and J. de Lucas,
A Lie systems approach for the first passage-time of piecewise deterministic processes,
in the book: Modern Trends of Controlled Stochastic Processes: Theory and Applications, pp. 144-160 (A.B.Piunovskiy ed), Luniver Press, 2010.
[Arxiv]
[MathScinet]
-
J.F. Cariñena, J. Grabowski and J. de Lucas,
Lie families: theory and applications,
J. Phys. A 43 305201 (2010).
Arxiv:1003.3529
[MathScinet]
-
R. Flores, J. de Lucas and Y. Vorobiev,
Phase splitting for periodic Lie systems,
J. Phys A. 43, 205208 (2010).
Arxiv:0910.2575
[MathScinet]
-
J.F. Cariñena, J. de Lucas and M.F. Rañada,
Lie systems and integrability conditions for t-dependent frequency harmonics oscillators,
Int. J. Geom. Methods Mod. Phys. 7, 289--310 (2010).
Arxiv:0908.2292
[MathScinet]
-
J.F. Cariñena and J. de Lucas,
Quantum Lie systems and integrability conditions,
Int. J. Geom. Meth. Mod. Phys. 6, 1235--1252 (2009).
Arxiv:0908.2292
-
J.F. Cariñena, P.G.L. Leach and J. de Lucas,
Quasi-Lie schemes and Emden--Fowler equations,
J. Math. Phys. 50, 103515 (2009)
Arxiv:0908.2292
-
J.F. Cariñena, J. Grabowski and J. de Lucas,
Quasi-Lie schemes: theory and applications,
J. Phys. A 42, 335206 (2009).
Arxiv:0810.1160
-
J.F. Cariñena and J. de Lucas,
Applications of Lie systems in dissipative Milne--Pinney equations,
Int. J. Geom. Meth. Modern Phys. 6, 683--699 (2009).
Arxiv:0902.2132
-
J.F. Cariñena, J. de Lucas and A. Ramos,
A geometric approach to time evolution operators of Lie quantum systems,
Int. J. Theor. Phys. 48, 1379--1404 (2009).
Arxiv:0811.4386
-
J.F. Cariñena and J. de Lucas,
Lie systems and integrability conditions of differential equations and some of its applications,
Proceedings of the 10th international conference on differential geometry and its applications.
Arxiv:0902.1135
-
J.F. Cariñena, J. de Lucas and M.F. Rañada,
Recent Applications of the Theory of Lie Systems in Ermakov Systems,
SIGMA 4, 031 (2008).
Arxiv:0803.1824
-
J.F. Cariñena, J. de Lucas and M.F. Rañada,
Integrability of Lie systems and some of its applications in physics,
J. Phys. A 41, 304029 (2008).
Arxiv:0810.4006
-
J.F. Cariñena and J. de Lucas,
A nonlinear superposition rule for solutions of the Milne--Pinney equation,
Phys. Lett. A 372, 5385--5389 (2008).
Arxiv:0807.0370
-
J.F. Cariñena, J. de Lucas and A. Ramos,
A geometric approach to integrability conditions for Riccati equations,
Electronic Journal of Differential Equations 122, 1--14 (2007).
Arxiv:0810.1740
-
J.F. Cariñena, J. de Lucas and Manuel F. Rañada,
Nonlinear superpositions and Ermakov systems,
in the book: Differential Geometric Methods in Mechanics and Field Theory, pp.15--33, eds F. Cantrijn, M. Crampin and B. Langerock, Academia Press, Prague, 2007.
Arxiv:0810.3494
Preprints and works in progress
J. de Lucas and C. Sardón,
A Lie systems approach to Kummer--Schwarz equations.
Submitted.
J.F. Cariñena, J. de Lucas and C. Sardón,
Lie--Hamilton systems: theory and applications.
Submitted.
J.F. Cariñena, J. de Lucas and P. Guha,
A quasi-Lie schemes approach to the Gambier equation.
J. de Lucas,
Dirac--Lie systems: theory and applications.
A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas and C. Sardón,
Superposition rules for Lie--Hamilton systems.
R. Flores-Espinoza and J. de Lucas
Lie systems and G-invariant Hamiltonian actions.
J.F. Cariñena and J. de Lucas,
Quasi-Lie schemes in quantum mechanics.
J.F. Cariñena and J. de Lucas,
Quasi-Lie families, quasi-Lie schemes, and their applications to Abel equations.
J. de Lucas and C. Sardón,
Recent applications of Lie systems in Physics
J. Grabowski and J. de Lucas,
Superposition rules for equations on supermanifolds.
J. de Lucas and C. Sardóon,
Lie symmetries for Lie systems.
J.F. Cariñena, G. Marmo and J. de Lucas,
Iso-purity solutions of non-Hamiltonian Lie systems.
Other works
Editor in chief of "Geometrical methods in Science and Technology" Journal's Web page
Member of the Editorial Board of "Aditi Journal of mathematical physics" Journal's Web page
Referee for the Portuguese Foundation for Science and Technology
Referee for J. Phys. A, Adv. Math. Phys., Rep. Math. Phys. and others
Reviewer for ZentralBlatt Public profile
Reviewer for Mathematical Reviews Public profile
Links
-
Institute of Mathematics of the Polish Academy of Science
IMPAN
-
Network of Geometry, Mechanics, and Control
GMC
-
Department of Theoretical Physics of the University of Zaragoza
DFTUZ
-
My profil at Google Scholar
Google Scholar
-
My profil at Arxiv
ArXiv profil
Downloads