~~
Feliks Przytycki - publications
Feliks Przytycki - publications
Click here for a complete list of publications.
-
On invariant measures of `Satellite' infinitely renormalizable quadratic polynomials.
Co-author: G. Levin.
arXiv:2212.1370.
-
No hyperbolic sets in J_infty for infinitely renormalizable quadratic polynomials.
Co-author: G. Levin.
Israel Journal of Mathematics 251 (2022), 635-656. arXiv:2107.11962v2.
-
McMullen's and geometric pressures and approximating the Hausdorff dimension of Julia sets from below.
Bulletin of the Polish Academy of Sciences Mathematics 69.2 (2021), 115-137.
-
Thermodynamic formalism methods in the theory of iteration of mappings in dimension one, real and complex.
Annales Mathematicae Silesianae 35.1 (2021), 1-20.
-
On Hausdorff dimension of polynomial not totally disconnected Julia sets.
Co-author: A. Zdunik
Bull. London Math. Soc. 53.6 (2021), 1674-1691.
-
Hausdorff and packing dimensions and measures for nonlinear transversally non-conformal thin solenoids.
Co-authors: R. Mohammadpour, M. Rams.
Ergodic Theory and Dynamical Systems 42 (2022), 3458-3489. arXiv:2003.08926v1.
-
Thermodynamic formalism for coarse expanding dynamical systems.
Co-authors: T. Das, G. Tiozzo, M. Urbanski, A. Zdunik.
Communications in Mathematical Physics 384 (2021), 165-199.
-
Thermodynamic formalism methods in one-dimensional real and complex
dynamics.
Proc. ICM -- 2018, Rio de Janeiro, Vol.2.
Official version.
Version in Polish
Wiadomosci Matematyczne. 54.1 (2018), 23-54.
-
Artur Avila -- laureat medalu Fieldsa w 2014 roku.
Wiadomosci Matematyczne 52.2 (2016), 219-249.
-
Geometric pressure in real and complex 1-dimensional dynamics via trees
of preimages and via spanning sets.
Monatshefte fur Mathematik 185.1 (2018), 133-158.
-
Lyapunov spectrum for multimodal maps.
Co-authors: K. Gelfert, M. Rams.
Ergodic Theory and Dynamical Systems 36.5 (2016), 1441-1493.
-
Geometric pressure for multimodal maps of the interval.
Co-author: J. Rivera-Letelier.
arXiv:1405.2443v2.
Memoirs of the American
Mathematical
Society 1246 (2019).
-
The Lyapunov exponent of holomorphic maps.
Co-authors: Genadi Levin, Weixiao Shen.
Inventiones math. 205 (2016), 363-382.
-
Lyapunov spectrum for exceptional rational maps.
Co-authors: K. Gelfert, M. Rams, J. Rivera-Letelier.
Ann. Acad. Scient. Fenn. Math.
38 (2013), 1-26.
-
Lyapunov spectrum for rational maps.
Co-authors: K. Gelfert, M. Rams.
Mathematische Annalen, 348.4 (2010), 965-1004.
-
Nice inducing schemes and the thermodynamics of rational maps.
Co-author: J. Rivera-Letelier.
Communications in Mathematical Physics 301.3 (2011), 661-707.
-
Estimates of the topological entropy from below for continuous
self-maps on some compact manifolds.
Co-author: W. Marzantowicz.
Discrete and Continuous Dynamical Systems. Ser.A, 21.2 (2008),
501-512.
-
Statistical properties of Topological Collet-Eckmann maps.
Co-author J. Rivera-Letelier.
Annales Scientifiques de l'Ecole Normale Superieure.
4e serie, t.40, (2007), 135-178.
-
On the hyperbolic Hausdorff dimension of the boundary of a basin of
attraction for a holomorphic map and of quasirepellers.
Bulletin of the Polish Academy of Sciences Mathematics, 54.1 (2006), 41-52.
-
Expanding repellers in limit sets for iteration of holomorphic functions.
Fundamenta Mathematicae 186 (2005), 85-96.
-
An improvement of J. Rivera-Letelier result on weak hyperbolicity on periodic orbits for polynomials.
Proyecciones 24.3 (2005), 277-286,
Errata Proyecciones 25.2 (2006), 231-232.
-
Entropy conjecture for continuous maps of nilmanifolds.
Co-author: W. Marzantowicz.
Israel Journal of Mathematics. 165 (2008), 349-379.
-
On Hausdorff dimension of some Cantor attractors.
Co-author: G. Levin.
Israel Journal of Mathematics 149 (2005), 185-198.
-
Equality of pressures for rational functions.
Co-authors: J. Rivera-Letelier, S. Smirnov.
Ergodic Theory and Dynamical Systems 23 (2004), 891-914.
-
Equivalence and topological invariance of conditions
for non-uniform hyperbolicity in iteration of rational maps.
Co-authors: J. Rivera-Letelier, S. Smirnov.
Inventiones Mathematicae 151 (2003), 29-63.
-
Porosity of Julia sets of non-recurrent and parabolic Collet-Eckmann
rational functions.
Co-author: M. Urbanski.
Annales Academiae Scientiarum Fennicae 26 (2001), 125-154.
-
Rigidity of conformal iterated function systems.
Co-authors: R.D.Mauldin, M.Urbanski.
Compositio Mathematica 129 (2001), 273-299.
-
Rigidity of tame rational functions.
Co-author: M. Urbanski.
Bulletin of the Polish Academy of Sciences, ser. Math. 47.2
(1999), 163-182.
-
The dichotomy for the boundary of a parabolic simply-connected
basin: either it is analytic or its Hausdorff dimension is bigger than
1.
Notes to a future paper joint with J. Skrzypczak and A. Volberg.
-
H\"older implies CE.
Asterisque 261 (2000), 385-403.
-
Rigidity of holomorphic Collet-Eckmann repellers.
Co-author: S. Rohde.
Arkiv for Math. 37.2 (1999), 357-371.
-
Topological invariance of the Collet-Eckmann property
for S-unimodal maps.
Co-author: T. Nowicki.
Fundamenta Mathematicae 155 (1998), 33--43.
-
Porosity of Collet-Eckmann Julia sets.
Co-author: S. Rohde.
Fundamenta Mathematicae 155 (1998), 189--199.
-
Conical limit sets and Poincare exponent for
iterations of rational functions.
Preprint Max-Planck-Institut fur Math., Bonn, 1996-104.
Transactions of the AMS 351.5 (1999), 2081-2099.
-
On measure and Hausdorff dimension of Julia sets for
holomorphic Collet-Eckmann maps.
International conference on dynamical systems, Montevideo 1995 -- a
tribute to Ricardo Mane., Eds. F. Ledrappier, J. Lewowicz, S. Newhouse.
Pitman Res. Notes in Math. series, 362. Longman 1996. 167--181.
-
Cantor sets in the line: Scaling functions and the
smoothness of the shift-map.
Co-author: F. Tangerman.
Nonlinearity 9 (1996), 403--412.
-
On the transfer operator for rational functions on
the Riemann sphere.
Co-authors: M. Denker, M. Urba\'nski.
Ergodic Theory and Dynamical Systems 16 (1996), 255--266.
-
Iterations of holomorphic Collet-Eckmann maps:
Conformal and invariant measures.
Transactions of the AMS 350.2 (1998), 717--742.
-
When do two rational functions have the same
Julia
set ?
Co-author: G. Levin.
Proceedings of the American Mathematical Society, 125.7 (1997),
2179--2190.
-
Accessibility of typical points for invariant measures
of positive Lyapunov exponents for iterations of holomorphic maps.
Fundamenta Mathematicae 144 (1994), 259--278.
-
Density of periodic sources in the boundary of
a basin of attraction for iteration of holomorphic maps: geometric coding
trees technique.
Co-author: A. Zdunik.
Fundamenta Mathematicae 145 (1994), 65--77.