Wojciech Kryński


Instytut Matematyczny
Polska Akademia Nauk
Śniadeckich 8
00-656 Warszawa, Poland

krynski(at)impan.pl


Research interests

Differential geometry, control theory and integrable systems. In particular geometry of distributions, path geometries, geometric theory of differential equations, foliations, webs and conformal structures.

Geometry and Differential Equations Seminar
Simons Semester: Symmetry and Geometric Structures

Papers

W. Kryński, O. Makhmali, Lewy curves in para-CR geometry, arXiv:2406.04798 (2024).

W. Kryński, A. Sergyeyev, Two-component integrable extension of general heavenly equation, Anal. Math. Phys., accepted, arXiv:2402.10317 (2024).

B. Jakubczyk, W. Kryński, Conjugate points of dynamic pairs and control systems, ESAIM:COCV, accepted, arXiv:2310.08933 (2024).

W. Kryński, O. Makhmali, A characterization of chains in dimension three, Ann. Sc. Norm. Super. Pisa Cl. Sci., accepted, arXiv:2303.08807 (2023).

W. Kryński, Deformations of dispersionless Lax systems, Class. Quantum Gravity 40(23) (2023).

W. Kryński, The Schwarzian derivative and Euler-Lagrange equations, J. Geom. Phys. 182 (2022).

M. Dunajski, W. Kryński, Variational principles for conformal geodesics, Lett. Math. Phys. 111(5) (2021).

T. Cieslak, W. Kryński, Geometric aspects of two- and threepeakons, Nonlinearity 34(9) (2021) 6685-6704.

W. Kryński, GL(2)-geometry and complex structures, J. London Mathematical Society 104(4) (2021) 1717-1737.

W. Kryński, O. Makhmali, The Cayley cubic and differential equations, J. Geom. Anal. 31 (2021) 6219-6273 .

W. Kryński, T. Mettler, GL(2)-structures in dimension four, H-flatness and integrability, Comm. Anal. Geom. 27(8) (2019) 1851-1868.

W. Kryński, Dissipative prolongations of the multipeakon solutions to the Camassa-Holm equation, J. Diff. Equations 266(4) (2019) 1832-1850.

W. Kryński, On deformations of the dispersionless Hirota equation, J. Geom. Phys. 127 (2018) 46-54.

M. Grochowski, W. Kryński, On contact sub-pseudo-Riemannian isometries, ESAIM:COCV 23(4) (2017) 1751-1765.

W. Kryński, Webs and the Plebański equation, Math. Proc. Camb. Phil. Soc. 161(3) (2016) 455-468.

M. Grochowski, W. Kryński, Invariants of sub-pseudo-Riemannian structures and Einstein-Weyl geometry, Radon Series on Computational and Applied Mathematics 18 (2016) 434-453.

W. Kryński, Paraconformal structures, ordinary differential equations and totally geodesic manifolds, J. Geom. Phys. 103 (2016) 1-19.

W. Kryński, Webs and projective structures on a plane, Diff. Geom. Appl. 37 (2014) 133-140.

W. Kryński, Remarks on the Jacobi endomorphisms and the Cartan invariants of ODEs, Int. J. Geom. Methods Mod. Phys. 11(10) (2014).

M. Dunajski, W. Kryński, Point invariants of third-order ODEs and hyper-CR Einstein-Weyl structures, J. Geom. Phys. 86 (2014) 296-302.

M. Dunajski, W. Kryński, Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs, Math. Proc. Camb. Phil. Soc. 157(1) (2014) 139-150.

B. Jakubczyk, W. Kryński, Vector fields with distributions and invariants of ODE's, J. Geom. Mech. 5(1) (2013) 85-129.

W. Kryński, Parabolic (3,5,6)-distributions and GL(2)-structures, Comm. Anal. Geom. 20(4) (2012) 781-802.

W. Kryński, Geometry of isotypic Kronecker Webs, Central Europ. J. Math. 10 (2012) 1872-1888.

W. Kryński, I. Zelenko, Canonical frames for distributions of odd rank and corank 2 with maximal first Kronecker index, J. Lie Theory 21(2) (2011) 307-346.

W. Kryński, Paraconformal structures and differential equations, Diff. Geom. Appl. 28(5) (2010) 523-531.

B. Jakubczyk, W. Kryński, F. Pelletier, Characteristic vector fields of corank 2 distributions, Ann. Inst. H. Poincaré (C) 26(1) (2009) 23-38.

W. Kryński, Remarks on convexity in dimension (2,2), Bull. Pol. Acad. Sci. Mat. 53 (2008) 207-211.

W. Kryński, Singular curves determine generic distributions of corank at least 3, J. Dyn. Contr. Sys. 11(3) (2005) 375-388.


Links

Google scholar