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1. The purpose of this exercise is to get familiar with the RSK algorithm
and its beautiful properties.

(a) Open SageMath and try to play a little bit with the RSK algorithm.
When you represent permutations as the permutation matrices, you can see
that there are some natural operations on the set of permutation matrices in-
herited from the symmetries of a square (the dihedral group naturally acts on
permutation matrices). Make experiments in SageMath and try to formulate
some conjectures describing the action of the RSK applied to permutations
obtained by these symmetries. Can you deduce a statistic on permutations
that corresponds to the length of the first column of the associated (via RSK)
Young diagram?

(b) Let σ ∈ Sn, and let λ be the associated Young diagram via RSK.
Prove that ℓ(σ) = λ1. Can you formulate a similar interpretation of λ2 (and
λ3, λ4, . . . - experiment in SageMath!)?

2. Let dλ be the number of standard Young tableaux (SYT) of shape λ.
Prove the hook-length formula:

dλ =
n!∏

(i,j)∈λ hookλ(i, j)
(1)

following the probabilistic argument below:
(a) Let eλ be the RHS of (1). Prove that (1) is equivalent to proving∑

µ : µ↗λ

eµ
eλ

= 1 (2)

with the initial condition e∅ = 1, where µ ↗ λ means that µ is obtained from
λ by removing a box.

(b) Let Oλ be the set of outer corners of λ, i.e. the set of boxes such
that one can remove from λ to obtain a smaller Young diagram µ. Define
a probability measure on Oλ by the following process, called the hook-walk :
choose a box □ in λ uniformly at random. Then choose the next box from
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the set of boxes belonging to the hook with the corner at □, again uniformly
(i.e. with probability (hookλ(□) − 1)−1, because we do not allow to choose
the same box □ that we have just chosen), and continue until you choose a
box belonging to Oλ. Prove that the probability that this process terminates
at (i, j) ∈ Oλ is equal to eλ\(i,j)

eλ
, and deduce (2).

(c) Notice that this process can be used to generate a uniform standard
Young tableau of a given shape. Try to code it in SageMath, and experiment
with generating various random Young tableaux. Maybe you can observe
something interesting?

3. In this excercise we will see that the asymptotic growth of E(ℓ(σ(n)))
is of order

√
n, as n → ∞, where σ(n) is a uniformly random permutation

from the symmetric group Sn.
(a) Let n > rs, and let σ ∈ Sn be a permutation. Prove that either the

length of the longest increasing subsequence ℓ(σ) > r, or the length of the
longest decreasing subsequence d(σ) > s.

(b) Deduce that E(ℓ(σ(n))) ≥
√
n.

[Hint:] use the inequality a+b
2

≥
√
ab.

(c) Prove that for any α > exp(1) one has

P(ℓ(σ(n)) > α) ≤ C exp(−c
√
n)

for some C, c > 0 that do not depend on n (they might depend on α).
[Hint:] Consider the following random variables: Xk(σ

(n)) = number of
increasing subsequences of length k in a random permutation σ(n), and use
the fact that P(Xk(σ

(n)) ≥ 1) ≤ E(Xk(σ
(n)). Apply this to find a bound for

P(ℓ(σ(n)) > k) for k = [
√
n(1 + δ) exp(1)].

4. The purpose of this exercise is to partially describe how to prove that

ℓ

(
σ(n)

√
n

)
p−→ Λ

for some constant Λ. It follows from the fact that ℓ(σ(n)) can be understood
using the Poisson point process, and from the fact that Var(ℓ(σ(n))) ≤ C

√
n

for some C. We are not going to discuss the relationship with the Poisson
point process, but we will prove the bound for the variance. In order to do
this, we will need the following theorem.
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Theorem 1 (Elfron–Stein–Steele inequality) Let, g ∈ C(Rn), gj ∈ C(Rn−1)
be continuous functions for 1 ≤ j ≤ n, and let X1, . . . , Xn be random vari-
ables. Then

Var(Z) ≤
∑

1≤j≤n

E(Z − Zj)
2,

where Z := g(X1, . . . , Xn), and Zj := gj(X1, . . . , X̂j, . . . , Xn).

(a) For any real numbers x1, . . . , xn let ℓ(x1, . . . , xn) denote the length of
the longest increasing subsequence in the word x1, . . . , xn. Note that ℓ(σ(n))
has the same distribution as ℓ(X1, . . . , Xn), where Xi are independent r.v.
uniformly distributed on the interval [0, 1]. Let Zj = ℓ(X1, . . . , X̂j, . . . , Xn).
Show that Z − Zj = 1Ej

, where 1Ej
is the indicator function (i.e. equal to 1

or 0, depending on whether Ej is true or not) of the following event Ej: Xj

participates in all maximal-length increasing subsequences in X1, . . . , Xn.
(b) Prove that

∑
1≤j≤n 1Ej

≤ Z, and deduce that Var(ℓ(σ(n))) ≤ C
√
n by

applying Theorem 1.

5. The purpose of this exercise is to define the Plancherel growth process
that allows to sample large Young diagrams w.r.t the Plancherel measure.

(a) Prove that for µ ↗ λ ⊢ n one has

P(λ(n) = λ|λ(n−1) = µ) =
dλ
ndµ

.

(b) Deduce that Eℓ(σ(n))−Eℓ(σ(n−1)) ≤
√
n
−1, and conclude that Eℓ(σ(n)) ≤

2
√
n.
[Hint:] Apply the identity obtained in (a) to analyse the difference Eℓ(σ(n))−

Eℓ(σ(n−1)) via RSK. Use the Cauchy–Schwartz identity.
(c) Let Iλ denote the set of inner corners of λ, i.e. the set of corners that

can be added to λ to obtain a larger Young diagram. For a box (i, j) define
its content c(i, j) := j − i. Prove that for µ ↗ λ one has

dλ
ndµ

=

∏
o∈Oµ

(c(x)− c(o))∏
x ̸=i∈Iµ(c(x)− c(i))

,

where x = λ \ µ.
(d) Use the formula proved in (c) and (a) to generate random Plancherel-

distributed Young diagrams in SageMath, using the Plancherel growth pro-
cess.
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6. Fix a partition λ ⊢ n, and let N ≥ ℓ(λ). Define ℓi := λi + n − i for
1 ≤ i ≤ N .

(a) Prove the following formula

[sλ]p(k,1n−k) = (n− k)!
N∑
j=1

Vand(ℓ1, . . . , ℓj − k, . . . , ℓN)∏
i ̸=j ℓi!(ℓj − k)!

,

where Vand(x1, . . . , xk) := det(xj−1
i )1≤i,j≤k is the Vandermonde determinant.

[Hint:] Use the bialternant formula.
(b) Apply this formula to find an alternative proof of the hook-length

formula (1).

7. Recall that for a probability measure µ on R with all moments finite,
the Cauchy transform Gµ(z) is defined as

Gµ(z) =

∫
R

dµ(x)

z − x
=

∑
i≥0

z−i−1Mµ
i ,

where Mµ
i :=

∫
R x

i dµ(x) is the i-th moment. Define the i-th cumulant κµ
i ,

and the i-th free cumulant Rµ
i by the following formal power series:

Kµ(z) := log

∫
exp(zx) dµ(x) =

∑
i≥1

κµ
i

zi

i!
,

Rµ(z) := G−1
µ (z)− z−1 =

∑
i≥1

Rµ
i z

i−1.

(a) Prove the following moment-cumulant formulae:

Mµ
n =

∑
π∈Part(n)

∏
B∈π

κµ
|B|,

Mµ
n =

∑
π∈NPart(n)

∏
B∈π

Rµ
|B|,

where Part(n) denotes the set of partitions of size n, i.e. π ∈ Part(n) consists
of pairwise disjoint subsets of [n] := {1, 2, . . . , n} whose union is the whole
set [n]. Similarly, NPart(n) denotes the set of noncrossing partitions of size
n, i.e. partitions with the property that there are no i < j < k < l such that
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i, k belong to the same block, which is different than the block that contains
j, l (make a drawing to see why they are “non-crossing”).

(b) Prove that the Gaussian distribution µ(x) = 1√
2π

exp(−x2

2
) is the

unique probability measure with the sequence of cumulants κn = δn,2, and
with the sequence of moments M2n = (2n− 1)!! and 0 for odd indices. Prove
that the semicircle law µ(x) = 1

2π

√
4− x21[−2,2](x) is the unique probability

measure with the sequence of free cumulants Rn = δn,2, and with the se-
quence of moments M2n = 1

n+1

(
2n
n

)
and 0 for odd indices. Could you give a

combinatorial interpretation of these identities?

8. This excercise serves as an introduction to the algebra of polyno-
mial functions on Young diagrams. Define Xλ = {c(□) : □ ∈ Iλ}, and
Yλ = {c(□) : □ ∈ Oλ}. Check that Xλ interlaces with Yλ. Recall that
the transition measure µλ associated with λ is uniquely determined by its
Cauchy transform:

Gµλ
(z) =

∏
y∈Yλ

(z − y)∏
x∈Xλ

(z − x)
.

For a symmetric function f , we define the so-called plethystic substitution
f [X − Y ]. We do this by declaring the value on the power-sum symmetric
functions:

pi[X − Y ] =
∑
x∈X

xi −
∑
y∈Y

yi,

and we extend it on the whole algebra C[p1, p2. . . . ] ∋ f .
(a) Prove that Mk(λ) := Mµλ

k = hk[Xλ − Yλ], where hk = s(k) is the com-
plete homogeneous symmetric function. This allows us to consider moments
Mk(λ) as functions on the set of Young diagrams.

(b) Conclude that the algebra generated by (Mi)i≥2 is the same as the
algebra generated by (Ri)i≥2 (over C) (we call it the algebra of polynomial
functions on Young diagrams).
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