BIG BIRKHOFF SUMS IN d-DECAYING GAUSS LIKE
ITERATED FUNCTION SYSTEMS

LINGMIN LIAO AND MICHAL RAMS

ABSTRACT. The increasing rate of the Birkhoff sums in the infinite it-
erated function systems with polynomial decay of the derivative (for
example the Gauss map) is studied. For different unbounded potential
functions, the Hausdorff dimensions of the sets of points whose Birkhoff
sums share the same increasing rate are obtained.

1. INTRODUCTION

Denote by N = {1,2,...} the set of positive integers. Let d > 1 be a
real number. A family {f,},en of C! maps from the interval [0,1] to itself
is called a d-decaying Gauss like iterated function system if the following
properties are satisfied:

(1) for any 7,5 € N f;((0,1)) N f;((0,1)) = 0;

(3) if fi(z) < fj(z) for all z € (0,1) then i < j;

(4) there exists m € N and 0 < A < 1 such that for all (ay,...,an) € N
and for all z € [0, 1]

0<[(far 00 fa,) (@) <A<

(5) for any § > 0, we can find two constants K1 = K;(0), Ko = K»(d) >
0 such that for ¢ € N there exist constants &;, A; such that

and
K Ko
W < gz <A < Zdi_‘s
We have a natural projection IT : N — [0, 1] defined by
I(a) = lim fq, 00 fa,(1).
n—oo

Its inverse gives for points € [0, 1] their symbolic expansions in NY. The
symbolic expansion is unique for most points, but there can exist countably
many points that have zero or two symbolic expansions. When the symbolic
expansion is unique, we write z = (a1(z), az(x),...) the expansion of = €
[0, 1].

For each n € N, and each word a; - - - a, € N”, the set

In(ala"' aan) = fa1 S Ofan([o’ 1])
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is called an n-cylinder. Except for a countable set, the n-cylinder I,(ay,- - ,an)
is identical with the set of points z € [0, 1] whose symbolic expansions begin
with aq,- -, a,. Write I,,(z) the n-cylinder containing x € [0, 1].

Denote by |I| the diameter of the interval I.

We say the d-decaying Gauss like iterated function system { f,, }nen satis-
fies the bounded distortion property if there exist positive constants K3 and
K4 such that for any two finite words aias - - - a, and b1by - - - b,,, we have

‘In-i-m(al)"' 7an)b17'” abm)|
< Kjy4.
L(as, - an)] - Im(br, - 2 bm)] —

Consider a potential function ¢ : [0,1] — R, such that ¢ is a constant
on the interior of I;(a;) for all a; € N. For n € N, the n-th Birkhoff sum of
¢ at x € (0,1) is defined by

(1.1) K3 <

n—1
Sn(p(x) :Z@(aj)7 ifxe[n(a1,~-- 7an>-
§=0
We remark that except for a countable set, the above Birkhoff sums are well
defined.
For a positive growth rate function ® : N — R, we are interested in the

following set
L BRT Snip(x) N
(1.2) E,(®) := {x € (0,1) : Jim on) 1} :

We will calculate dimpy E,(®), where dimp(-) denotes the Hausdorff di-
mension of a set. When ®(n)/n has a finite limit as n — oo, E,(®) is the
classical level set of Birkhoff averages studied in [2], [4], [6],... In this paper
we will consider the case when ®(n)/n — oo, thus necessarily the potential
function ¢ is unbounded in [0, 1].

For all j € N, denote by ¢(j) the constant value of ¢ on the interior of
1-cylinder I;(j). We obtain the following multifractal analysis results on the
Hausdorff dimension of E,(®), according to different choices of ¢ and &.

Theorem 1.1. Suppose ¢(j) = j* for all j > 1, with a > 0.

(I) When ®(n) = ™ with a > 0, we have

(I-1) dimy E,(®) =1 if a < § and the distortion property (1.1) holds;

(I-2) dimpy E,(®) = }l/d if o> 3.

(I1) When ®(n) = " with B > 1, we have dimpy E,(®) = ﬁ.

Theorem 1.2. Suppose ¢(j) = e08)” for all j > 1, with b > 1.

(I) When ®(n) = e with a > 0, we have

(I-1) dimpyg E (@) =1 if a < b% and the distortion property (1.1) holds;

(I-2) dimp Ey(®) = 1/d if o > 525

(I1) When ®(n) = " with B > 1, we have dimy E,(®) = —1+—.
dpb —po+1

Theorem 1.3. Suppose ¢ = €/° for all j > 1, with 0 < ¢ < 1.

(I) When ®(n) = e with a > 0, we have

(I-1) dimpg E,(®) =1 if a < 1 and the distortion property (1.1) holds;

(I-2) dimy E,(®) = ¢ if a > 1.
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dimpy E,(®)
1
1
It
exponential ™ super-exponential e?"

FIGURE 1. dimpg E,(®) for ¢(j) = 7.

dimy E,(®)
1
1
d
0 a =5 B=1+
exponential ™ super-exponential e?"

FIGURE 2. dimy E,(®) for ¢(j) = elosi)"”,

(II) When ®(n) = €”" with 3 > 1, we have dimy E,(®) = 15¢.
— 1—c

(III) When ®(n) = e with v > 1, we have dimpy E,(®) = o g oy

Theorem 1.4. Suppose p(j) = eI for all j > 1, with ¢ > 1. When ®(n) =

e, with a > 0, we have
(I-1) dimpg E,(®) =1 if a < 1 and the distortion property (1.1) holds;

(I-2) dimpg E (@) =0 if a > 1.

The Hausdorff dimensions in Theorems 1.1-1.4 are depicted in Figures
1-4.
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dimpy E,(®)
1 .
l——c}|....... —
d :
0 a=3 B=1+ v =1+
exponential ™ super-exp e?"  sup-sup-exp e’

FIGURE 3. dimpg E,(®) for ¢ = e/* with 0 < ¢ < 1.

dimy E,(®)

0 a=1

. «
exponentiel e”

FIGURE 4. dimpy E,(®) for ¢ = € with ¢ > 1.

Remark 1. The critical cases a = % in Theorems 1.1, a = b% in Theorem

1.2, and @ = 1 in Theorems 1.3 and 1.4 are not investigated in this paper.
However, Theorem 1.2 in [7] suggests that the Hausdorff dimension function
has jumps at these points.

Remark 2. Theorem 1.1 was announced in [7, Theorem 4.1.], but with an
erroneous formula in the part (iii) (now part II).

Remark 3. For simplicity, in our proofs, we assume d = 0 in the condition
(5) of the d-decaying Gauss like iterated function system. For the general
case, the proofs are the same. We need only to replace d by d + ¢ for the
lower bound and by d — ¢ for the upper bound, then take the limit § — 0.
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2. TECHNICAL LEMMAS

In this section, we prove four technical lemmas. The first lemma serves
for the proof of full dimension in the theorems, i.e., the proofs for (I-1) of
Theorems 1.1-1.4.

Let (ng)r>1 be a positive sequence satisfying ny/k — oo and ng41/ng — 1
as k — oo. Let ug be a positive sequence such that

k

, 1
(2.1) klg](r)lo nk;log u; = 0.

For each M € N, set
Ey i={x € (0,1) : an, () = ug, and 1 < a;(x) < M if j # ni}.

Then we have the following lemma. The idea comes from the proof of
Theorem 1.4 of [10].

Lemma 2.1. Suppose the d-decaying Gauss like iterated function system
{fn}nen satisfies the distortion property (1.1). Then we have

lim dimg Ey = 1.
M—oo

Proof. For any k > 1, let I, (a1 - - - ap, ) be an ni-cylinder intersecting Ejy.
By the distorsion property (1.1), we have

k
‘Ink’ > ng H ‘Inj_nj—l—l(a’nj—l‘f'l? T 7a77»j_1)’ ’ ar_Ljd7
Jj=1

where by convention ng = 0. U

Let s(M) be the Hausdorff dimension of the set of points = such that all
aj(x) < M. Then s(M) is increasing to 1, see for example, [9, Theorem
3.15]. Further, there exists a probability measure v living on II(NVY) and a
positive constant Cjs such that for any cylinder I,,(ay,...,a,) we have

v(In(ar,. .. an)) < OunlIn(a,. .. a,)>3D=L
Define a probability measure ;1 on each cylinder I,,, intersecting Eys by

k
M(Ink) - H V<Inj—nj_1—l(anj_1+17 te aanj—1>)-
j=1
By Kolmogorov Consistence Theorem, u is well defined and is supported on
Ey.
Then for each = € E);, we have

k
[y (@)D > O L, (2)) T ] 0
j=1

Observe that (2.1) implies that Z?Zl log a,; < ny, while the part (4) of
the definition of the d-decaying Gauss like iterated function systems implies
that
log A

(2.2) log |1, (z)| < — Nng.
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Thus,

log (I, (7))
2.3 — T > 95(M) — 1 — o1
(23) T r 2 250) ~ 1= o(1)
for large k.

log u(B(z,r)) of

This allows us to estimate the local dimension liminf,_,q Tog

measure p at x. Let us first observe the following two facts.
Fact 1. For r = |I,, (x)|,

Br(l‘) NEy C Ink(x)

Indeed, the pair (1, (), I,,,—1(x)) is an image of the pair (I;(an,), [0, 1])
under the map f,, 0...0 fankfl‘ The cylinder [;(ay, ) has length ~ agg and
lies in distance = a;g“ from the endpoints {0,1}, and the map we apply
has bounded distortion, hence it roughly preserves the proportions. Thus,
I, (x) is also short and far away from the endpoints of I, —1(x).

Fact 2. When k — oo,

log [In,,, (z)]
log | I, ()]
Indeed, as
[Lnjss (2))]
| Iy, ()]

the statement follows from the formula (2.2) and the hypothesis ngy1/n; —
1 which is equivalent to (ng+1 — ng)/ng — 0.

The first fact implies that when r = |I,,, (z)| we can use (2.3) in the local
dimension calculation. The second fact implies that we do not need to check
any r not of the form r = |I,,, (z)|. Thus, by the Mass Distribution Principle
(see [1, Principle 4.2]), we have

> (Kled)nkJrlfnk . Klaid

Nk+1

dimg Ep > 2s(M) — 1.

Passing with M to infinity, we obtain the assertion.

The second lemma is an improved version of [3, Lemma 3.2.], [5, Proof of
Theorem 1.3.], [7, Lemma 2.2.] and [8, Lemma 2.2.].

Let (Sn)n>1, (tn)n>1 be two positive integer sequences. Assume that s, >
tn, Sn,tn — 00 as n — oo, and

Sn_tn

lim inf > 0.

n—00 Sn

For N € N, let
B(sp,tn, N) :={x € (0,1) : s, —tn, < an(x) < $p+1tpn, Yn > N}.

Lemma 2.2. We have

*  logt;
dimg B(sp,tn, N) = liminf n_HE:’:l o8 b .
n—oo %" log s — log ty
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Proof. Within this proof, we write f(n) ~ g(n) if f(n) and g(n) differ by at
most an exponential factor, that is
f(n)
g9(n)
We give the proof for the case N = 1. For the general case, note that
B(SnatTL?N) = U fal O"'OfaN_l(B(Sn+N,1,tn+N,1,1))

al---aN,leNN*1

lim sup
n—oo T

log

<.

is a countable union of bi-Lipschitz images of B(s,+n_1,tn+N—1,1). Since
the bi-Lipschitz maps preserve the Hausdorff dimension, we have

dimH B(Sn, tn, N) = dimH(B(sn+N_1, tn+N—1; 1))

On the other hand, notice that the dimensional formula of the lemma we
will obtain does not depend on the finite number of first terms of the two
sequences (sy,) and (t,), we then have

dimpg B(sp, tn, N) = dimg(B(sp, tn, 1)).

Let n > 1and I,(a1,...,a,) be an n-cylinder with non-empty intersection
with B(sy,tn,1). Then for each 1 < k < n, ay € [sy — tk, sk + tg]. Define
Dy(a1,...,an) = {z € In(a1,...,an) : an+1(x) € [Snt1—tnt1, Snp1+tnt1] -

We have

B(sp,tn, 1) ﬂ U I(ay,...,a,)

al,..-,Q
a G[Sz tzasz+ti]

n=1 al,...,an
a; €[s;—t;,8i+1;]

At level n we have ~ [[;,t; intervals I,(ai,.. an) and corresponding
D,(aq,...,a,). Bach I,(a1,...,ay) is of size ~ Hl 1 5; %, Moreover,
[Dn(ai, ..., an)| - Sn+§n+l it s
’In(al, ce ,an)‘ 1=Sn4+1—tnt1 e
Thus, using for a given n the sets Dy(aq, ..., a,) as a cover for B(sy,, tp, 1),

we need ~ [[_, t; of them, each of size ~ t,41 [[/7, s;% Then we obtain

the upper bound

" oot
dimpg B(sn,tn, 1) < liminf n+12:1 1108%i .
n—oo Z ]()g S — 10g ot

To get the lower bound, we consider a probability measure p uniformly
distributed on B(sp,t,, 1), in the following sense: given ay,...,a,—1, the
probability of a,, taking any particular value between s,, —t,, and s,,+t, is the
same. The basic intervals I,(ai,...,a,) and corresponding D, (a1, ..., ay,)
have the measure ~ [, tl_l

Our goal is to apply the Mass Distribution Principle, hence we need to
calculate the local dimension of the measure p at a pu-typical point x €
B(sn,tn,1). Fix any = € B(sy,tn,1). Denote by r, the diameter of the set
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Dy(ai(z),...,an(x)) and by r], the diameter of I,(ai(x),...,an(z)). When
r =r,, we have

log (B (x)) _ log u(Dn(ar(),. .., an(2))) >y logt
logr logry, d Z?:Jrll log s; — log ty41

For r, < r < r], the ball B,(x) still does not intersect any point from
B(sn,tn, 1)\ Dyp(ai(x),...,an(x)), hence it has the same measure as B,, (z),
but a larger diameter. Finally, for r}, , <7 <7, we have

#(By () ~ —u(B, (2)),
Tn
since each cylinder I,,11(a1(x), ..., an(z),j) contained in Dy, (ai(x),...,an(z))
has the same measure and approximately the same diameter. Applying the
obvious fact that
log z120  log 2o

log z123 ~ logzs
for all z; <1 and 23 < 29 < 1, we see that for r < r,

log (B, (z)) _ log(u(Br, (2)) -1/rn)
log Ty, log r '

Thus, the minimum of the function r — log (B, (x))/ logr for r}, ., < <1rj,
is equal to its value at r,,, up to an error term that vanishes as n — oo. It
implies

1 B 1 B " logt;
timing PEHBAD) _ g 08B () _ gy i logls |
r—0 logr n—00 log ry, n—oo @3 " ogs; — logty i

Applying the Mass Distribution Principle, we obtain the lower bound for
dimpg B(sp, tn, 1) and finish the proof. O

The remaining two lemmas are generalizations of Lemma 2.1 of [7].
Let ((-) be the Riemann zeta function. For m,n € N, a > 0 and ¢ > 0,
let

A(m,n,a,¢e) := {(il,...,in) e N": Zzz € [m,m+m5)]}.
k=1
For s > 1/d, write

G(m,n,a,e,s) = Z ﬁ i,;ds.

i1-in€A(M,n,a,e) k=1

Lemma 2.3. There exist positive constants C1 = C1(a, s),Ca = Ca(s), and
C3 = C3(a), such that for all C3 - (m3%~ ")~/ < ¢ < 1/3, we have

G(m,n,a,c,s <CC”_1£-m171ds
s Ty Uy <y > L1Gy

Proof. The proof goes by induction. First consider the case n = 2. Note
that if i{ + 5 € [m, m + me] then at most one of i1, 79 is strictly larger than
mdme - We divide the sum in the definition of G(m,n, a, ¢, s) into two parts,
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one is 717 > %, the other is 71 < % However, by permuting i; and
io, the two sums are the same. Thus

(m(12+€))%
G(m,2,a,e,8) <2 >k ®(m(l+e) — k)T Noae(k),
k=1
with Ny, qe(k) == 8{ia : m — k* <i§ <m — k% + em}.
Assuming € < 1/3, we can estimate for a > 1
Nopac(k) < [a tem(m — k%) a1 < [em!/o . g~ 13- 1/e],
while for a < 1
Nipac(k) < [a tem(m(1 + &) — k%) e 1] < [em!/® - a=1(4/3) Y1),

That is, in both cases we will get an upper estimation in the form [sml/“ :

Ca(a)].
If z > 1, we can write [2] < 2z. Thus, for ¢ > m~/2C} ! (a) we have

Ny ac(k) < 2em/® - Cy(a).

Hence
G(m,2,a,¢,s)
(m(12+s>)%
(2.4) <2 Z k:_ds(%)_% - 2ema - Cy(a)
k=1

ds

<((ds) - 2%+204(a)5m1_7

Assume now that the assertion is satisfied for all n < N for some N > 2,
we will prove by induction that it holds for n = N as well.

As above, there is at most one iy such that i, > w. Thus the sum
of G(m, N,a,e,s) can be divided into two parts, one is 4; < ™5™ and the
other is iy > ™E™E But the latter is the same as the first case by permuting
i1 and 9. Further, by observing 3(m — k%)e > me, we can deduce

( m+me ) %

G(m,N,a,e,s) < Z kdsZG m—k*)(1+ je), N —1,a,¢,s).

Substituting the induction assumption, we get
(m-‘—mf)%

G(m’NaCL?gys)SG-ClC’é\[*Z m 1-ds ds Z . s

<6-3% clcgv*%ng(ds).

Thus, by comparing the formula (2.4), we proved the assertion for

ds+a

Cy =27 Cy(a), Cy=6-3" ((ds),

and we needed that ¢ € ((m32~")~1/C;'(a),1/3). We can choose C3 =
ot O
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The next lemma is very similar. Let

A(m,n,b,e) = {(il,...,in) eN": Y elosin)” ¢ [, m(1 +g>]}.

k=1
and for s > 1/d, write

G(m,n,b,e,s) = Z H i 9s,

i1 anA(mnbs k 1

Lemma 2.4. There exists a positive constant C = 5(3) such that for all
e (os(m3* ™™ NV ¢ < 1/3, we have

@(m, n,b,e,s) <6- On—1g . p(1=ds)(logm)'/®

Proof. The proof goes again by induction. First consider the case n = 2.
Similar to the proof of Lemma 2.3, we have
oog(m(1+e)/2)1/b ,
G(m,2,b,e,5) < 2 Z [ —ds o —ds(log(m—elosk)7))1/b - Nonpe(k),
k=1
with
Npnpe(k) == #{iz : m — eloah)’ < gllogia)” <y ollogk)” | em}.

For € < 1/3, short calculations give us the following estimation

]/\}m7b75(k) S [35 . e(logm)l/b_l.

. _ 1/b
Hence, if € > ¢~ (logm) / ,

1/b

]/\\7m7b75(k) < 6e - ellogm)

1/b

Thus, by noting el°8(m/3)""" > %eaogm)l/b, we obtain
@(m7 27 b’ £, S) <12- 3dsc(d8)€(1—ds)(logm)l/l)‘

Assume now that the assertion is satisfied for all n < N for some N > 2,
we will prove by induction that it holds for n = N as well. We have

e(log(m(1+s>/2>1/b 9
G(m,N,b,e,s) <2 Z ZG m—e(los k)’ )(1+je), N—1,b,¢, s).
k=1 §=0

Substituting the induction assumption, we get
G(m,N,b,e,s) <12 SdSCAZ'N*QEe(lde)(IOgm)l/bC(ds).
Thus, we proved the assertion for
C =2-3%¢(ds)

under the assumption € € (e_(loﬁ“”“(m?)2 e ,1/3).
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3. PROOFS FOR (I-1) OF THEOREMS 1.1-1.4 AND (I-2) OF THEOREM 1.4

3.1. Proofs for (I-1) of Theorems 1.1-1.4. For these parts of proofs
we suppose the d-decaying Gauss like iterated function system satisfies the
distortion property (1.1). We will apply Lemma 2.1.

Note that in all cases we are going to prove, the function ® is taken as

®(n) = e"". Let &€ > 0. Take ng = Jea(172) and uy, = o H(®(ny) — P(ng_1)).
Then evidently the sequence (ny);>1 satisfies the assumption of Lemma 2.1.
We can also check that Eyy C E (®). In fact, for any € Ejr we have
(I)(nk) < Snk‘P(a:) < (I)(nk) + nk‘P(M)'

Since ®(n)/n — oo, we see that

Snpp(T)

D(ny,)
However, as ng+1/nr — 1 and S,y is increasing, this is enough to have
lim Snp(T) — lim Snep(T)
n ®(n) ko ®(ng)

— 1.

and we are done.
Now we need only to check for each case of ¢ in Theorems 1.1-1.4, the
condition (2.1) is satisfied. First notice that

B(ng) — B(ng_1) =€~ — e DT m (1 — )k .
Thus when ¢(j) = j?, we have
up ~ ((1 — s)k_aeklis)l/a,

and, if @ < 1/2 and ¢ is small enough,

Z’?—l jl—e/a
lim — ) 1 lim —=—F——— =0.
i nkZ ogu; = Jlim =i =0
When ¢(j) = e(089)"  then

1—
g ~ eloa((1—e)k=eek =)0

. b .
and if a < g and ¢ is small enough,

k k
1 . Zj:1.7 b
klggonik Elloguj: lim ——— =0

When ¢(j) = €/°, we have
up ~ log((1 — )k %™ )1/e,

and, if @ < 1 and ¢ is small enough,

>y 55 log j
]}Ln;o nik_zlogu] = hm W =

Then in all cases the condition (2.1) is satisfied.
Applying Lemma 2.1, we complete the proofs.
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3.2. Proofs for (I-2) of Theorem 1.4. We will use a natural covering.
Suppose ®(n) = €™ with a > 1. For each z € E,(®), for any small £ > 0,
for all large enough n, we have

(1—2)®(n) < Z«p(ak) < (1+4¢)@(n).
k=1

Thus
(1-e)®(n)—1+e)(n—1)<p(a,) < (1+e)®(n)—(1—e)®(n—1).
Note that for o > 1, we have
(14e)®(n)—(1—e)®(n—1) = (1+e)e™ — (1 —e)e™ V" < (14¢)e™,
and
(1—2)®(n) —(1+e)d(n—1)=(1—e)e™ —(1+¢)e™ D" > (1 —2e)e™.
Hence
(1—2e)e™ < p(an) < (14¢e)e™.
However, for ¢(j) = e/ with ¢ > 1, there is at most one j such that
(1-2e)e™ < (j) < (1+e)e™,

Hence E,(®) is a countable set which has Hausdorff dimension 0.

4. REMAINING PROOFS

We will divide the case I-2 of Theorem 1.1 into two subcases: subcase 1-2a
for 1/2 < a < 1, and subcase I-2b for @ > 1. Similarly, we will divide the
case I-2 of Theorem 1.2 into subcase I-2a (b/(b+ 1) < a < 1) and subcase
I-2b (a > 1).

Theorem 1.1, case II; Theorem 1.1, subcase I-2b; Theorem 1.2, case II;
Theorem 1.2, subcase I-2b; Theorem 1.3, case I-2; Theorem 1.3, case II;
Theorem 1.3, case III are all obtained by applying Lemma 2.2.

4.1. Proof of Theorem 1.1, case II. Let € E (®). Fix some small
e > 0. For N large enough we will have ®(n)(1—¢) < Spp(z) < ®(n)(1+¢)

for all n > N. This implies
p(an(x)) = Snp(x) — Sp—10(2)
(4.1) E(Cb(n)(l —e)—Pd(n—-1)(1+¢e),2(n)(1+¢)—P(n—1)(1 — 5))

for n > N. Substituting the formula for ®, we get
o(an(z)) € (eﬁ"(l —2),e5" (1 + 25)).
Hence a further substitution of the formula for ¢ gives us
e?" (1 = 3¢/a) < an(x) < ¥"/(1 + 3¢/a).
Thus,

E,(®) C UB(@BH/“, 3ee®" /% Ja, N).
N
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Put s, = €/"/% and t,, = 3565n/‘1/a. By Lemma 2.2, we have the upper
bound

" log3ece®/?/a
dimpy E,(®) < lim inf nHZJ—lj © /nH
n—oo g3y uT logeP /a —log 3eef" " /a/q

— liminf Z?:1ﬁj/a

_lnn—lgé ntl gj /. _ gn+l
dezlﬂ /a B /a

- 1

dp—-p+1

On the other hand, let €, be a sequence of positive numbers converging
to 0. Let = € B(e?"/® ¢,e?"/% 1). For large n we have
n—1 )
P (1—€,)* < Spep(x) < e’Bn(l—l—en)a—i—Z(H—si)“-e’Bl < " (1+ag,+o(1)).
i=1
Thus,
E,(®) D B(e?/ e,/ 1).
Applying Lemma 2.2 and doing almost the same calculation as above, we
obtain the lower bound.

4.2. Theorem 1.1, case I-2b. We can repeat the proof of Theorem 1.1,
case II. From the formula (4.1), we get

elan(@)) € (€7 (1= 20), €™ (1+22) ).
Hence,
E,(®) c | JB(e™/*, 32e™ /% /a, N).
N
On the other hand, for a sequence of positive numbers &, converging to 0,
we have
E (@) D B(e™/%, e/ 1),
Applying Lemma 2.2, we have
Z?:l j%/a 1

dimpg Ey(®) = liminf =-.

n—00 dZ?illja/a—(n—i—l)a/a d

4.3. Theorem 1.2, case II. From the formula (4.1), we get

o(ap(x)) € (eﬁn(l —2),eM" (14 28)).
Hence,

n/b 3e n _ n/b
E,(®) c | JB( 5B (1/6=1)eB"" N,
N

On the other hand, for a positive sequence &, converging to 0, we have
E (@) D B(eP"" £,8m0/0- 18" 1),
Applying Lemma 2.2, we have

. . i A 1
dimp Ep(®) = lim inf A3 pils — perD/e  dpib — B 41
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4.4. Theorem 1.2, case I-2b. From the formula (4.1), we get

olan(z)) € (e"“(l —2),e"" (1 + 25)).
Hence,

C UB a/b 35 (1/b71)ena/b7N)_

On the other hand, for a sequence of positive numbers &,, converging to 0,
we have

E (®) D B(ena/b7Ennau/bfl)6na/b7 0.
Applying Lemma 2.2, we have

Zn—ﬂa/b 1
dimy E,(®) = li f J =,
) e I e — e

4.5. Theorem 1.3, case I-2. From the formula (4.1), we get

olan(z)) € (e”a(l —2¢),e™ (1+ 25)).
Hence,

E,(®) c | JB(n®, %no‘(l/c—l), N).
N

On the other hand, for a sequence of positive numbers &, converging to 0,
we have

E,(®) D B(n®/*,e,n*1/e=b 1),
We then apply Lemma 2.2 to obtain

" La(l/e—1)logj -
dimpy F,(®) = lim inf szfl W/ )1og _1 ‘
noo @y i afclogj —a(l/c—1)logn d

4.6. Theorem 1.3, case II. From the formula (4.1), we get

(ap(x)) € <e*3n(1 —2),eM" (1 + 26)).
Hence,

3¢ _
Ep(®) c | B, — ") N).

On the other hand, for a positive sequence g, converging to 0, we have
E,(®) D B(B"¢ e,8m/e7D 1),

Applying Lemma 2.2, we obtain

| ST j(1/e = Dlog i
it B ) = R ST Jelog s — (n+ D(1/e— Dlogh 4
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4.7. Theorem 1.3, case III. From the formula (4.1), we get

olan(z)) € (ee””u —2),e (1+ 25)).
Hence,
) C UB o 3 masen) Ny,

On the other hand, for a posmve sequence &, converging to 0, we have
E,(®) D B(e%vn,anew(l/cfl), 1).
Applying Lemma 2.2, we get
>j1(1/e— 1)y 1—c

dimyg E,(®) = lim inf = .
H ‘P( ) 00 dzn-i-l 1/0_)/] (1/C - 1)7n+1 d,y _ (1 _ C)(’}/ o 1)

We also apply Lemma 2.2 for the lower bounds of Theorem 1.1, subcase
I-2a and Theorem 1.2, subcase I-2a. But for the upper bounds we need
Lemma 2.3 and Lemma 2.4 respectively.

4.8. Proof of Theorem 1.1, case I-2a. We first show the lower bound.
Let x be points such that

olan(z)) € <ana_le”a(1 — &), an® e (1 + en)>

where €, is a summable positive sequence. Then

n n n
Y a1 —g) <> plai(x) <Y e e (14 ¢),
j=1 j=1 j=1

which implies

—22@70‘ led® £j <Zcp (aj(x —QZa]a 1ed® €j.

Note that
n/2 n/2

S ajeteey < 3 ajete” <
i=1 j=1

and by the summability of (&),

n/2

E o tel” sjgano‘ln E gj = o(e

Jj=n/2

Hence, these points x are all in E,(®), that is

E,(®) D B((omaflena)l/“, 8—n(omo‘fle”a)l/“, 1).

a

Applying Lemma 2.2, we obtain the lower bound.

Now we turn to the upper bound.
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Take a subsequence ng = 1, and np = &~ (k) = kY (k > 1). If
x € E,(®) then for any € > 0 there exists an integer N > 1 such that for
all k> N,

(1 —¢/5)®(nk) < Snpp(x) < (1+¢/5)0(nk),
and (as ®(ng) = )
(1—¢/5)e? —(14¢/5)e" ! < Sy, (2) = Sn,_, (x) < (1+€/5)ef —(1—¢/5)e L.
Observe that
(1+¢/5)e" — (1—¢/5)eb1 < ((1 —e/5)ek — (1+ 5/5)6’4*1) (1+e).

Fix ¢ = 1/3 and denote by Ay the set of points for which the block
of symbols ap, ,+1(x)---an,(x) in the symbolic expansion of = from the
position ni_1 + 1 to ni belongs to the set

A <(1 —¢e/5)e" — (1 +¢/5)e" L ny, — ny_y, a,e) .
Then

Now, we are going to estimate the upper bound of the Hausdorff dimension
of ' = (41 Ax. For (.~ Ak with N > 2 we have the same bound and
the proofs are almost the same.

Let us now define n(k) = nyp—nj_1 and m(k) = (1—¢/5)e* —(14¢/5)er1.
By the assumption a > 1/2, we have m(k)/3"*) > 1 for k large enough.
Thus we can apply Lemma 2.3 to calculate G(m(k),n(k),a,1/3,s) for all
s> 1/d and all k large enough. Hence

> I, (a1, ..., an,)|°

Iy, (@1,50n, YNF#D

k
<K3™ [ G(m(j).n(j),a,1/3,5)
j=1
k 1—d
<comst - K3"™*CYCy*37F [[m(j) = .
j=1

As ds > 1, the right hand side is arbitrarily small for large k. This proves
the s-dimensional Hausdorff measure

H¥(F) =0
for all s > 1/d. We thus obtain the wanted upper bounded.

4.9. Theorem 1.2, case I-2a. For the lower bound, we follow the proof of
Theorem 1.1, case I-2a by taking those points z such that

vlan(x)) € (ana_le"a(l —ep),an® e (1 4 5n)>

where ¢, is a summable positive sequence. Then we still have these points
x are all in E,(®). By apply the inverse of ¢, we have

E¢(<I>) S B(@(na+10ga+(a_1) 10gn)1/b’ 2%na(l/b—l)e(no‘—l-log a+(a—1) logn)l/b7 1)'
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Applying Lemma 2.2, we obtain the lower bound.

The proof of the upper bound is also similar to that of Theorem 1.1, case
I-2a. The difference is that we need to apply Lemma 2.4 in place of Lemma
2.3.

As in the proof of Theorem 1.1, case I-2a, we take a subsequence ng = 1,
and nj = ®~1(e¥) = k¥ (k > 1). Denote by Aj, the set of points for which
the block of symbols a,, ,+1(z) - an,(x) in the symbolic expansion of x
from the position ng_1 + 1 to n; belongs to the set

A (m(k),n(k),b,1/3),

with n(k) = ng — ny_1 and m(k) = 1eF — 18eF~1. Then
E (@) c|J ) 4x
N k>N
We need only to estimate the upper bound of the Hausdorff dimen-
sion of F' = (>, As. By the assumption o > b% > 1, we still have

m(k)/3™*) > 1 for k large enough. Thus we can apply Lemma 2.4 to cal-
culate G(m(k),n(k),b,1/3,s) for all s > 1/d and all k large enough. Hence

Z ’Ikn(alw-'aank)’s

Ikn (al,...,ank)ﬂF;é@

k
<k5™ [ G(m(5),n(j).b,1/3,5)
7j=1
k
<const - K5 - 6k . Ok .3~k H p(1—ds)(log m(5))"/*
j=1

Note that logm(j) ~ j and nj, ~ k. Thus

k
[ - osmin' o =)k
i=1
and, as I’JFTl > é, this is the dominating term. As ds > 1, this term, and
the whole product, converge to 0 for £ — co. This proves the s-dimensional

Hausdorftf measure
H(F)=0
for all s > 1/d. We are done.
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