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2011. The School’s website can be found at http://math.postech.

ac.kr/home/special/2011/3rd_ilju_homepage/index.htm. In these
lectures we will motivate and present the definition of quantum Lévy
processes on (locally) compact quantum groups and show that such
processes can be realised in a concrete way as quantum stochastic pro-
cesses on a symmetric Fock space. The plan of the talks is as follows.

Lecture 1

Definition of classical Lévy processes on topological groups. Intro-
duction to the concept of noncommutative mathematics (C∗-algebras
as ‘quantum’ topological spaces). Definition and basic properties of
(locally) compact quantum semigroups and groups.

Lecture 2

Convolution of states on a quantum group; convolution semigroups
of states and their generators. Basic concepts of noncommutative prob-
ability. Definition of (weak) quantum Lévy processes on a locally com-
pact quantum group and their first properties.

Lecture 3

Quantum stochastic calculus for processes on a symmetric Fock space.
Quantum stochastic differential equations and their solutions.

Lecture 4

A topological version of the Schürmann Reconstruction Theorem for
quantum Lévy processes with norm-continuous Markov semigroups.
Some comments on convolution semigroups of states with unbounded
generators. Further directions of research and related open problems.
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1. Lecture 1

1.1. Lévy processes in classical probability. Classical Lévy pro-
cesses on topological groups are stochastic processes, indexed by contin-
uous ‘time’ variable and having independent and identically distributed
increments. They can often be used to describe natural physical pro-
cesses involving random phenomena. Their mathematical theory turns
out to be at the same time very rich and quite rigid.

Let G be a topological group (a group, which is also a topological
space and such that the multiplication and the operation of taking
the inverse element are continuous). We will usually assume that G
is a locally compact group, i.e. that every point of G has a compact
neighbourhood. Any group equipped with a discrete topology is locally
compact; other examples are given by Tn, Rn or classical Lie groups. By
a G-valued random variable we understand a Borel measurable function
from a probability space (Ω, µ) to G. By the distribution of such a
random variable X : Ω → G we understand the measure µ ◦ X−1 on
G; sometimes we just write dX, so that for a Borel set S ⊂ G we have
dX(S) = µ(X−1(S)).

Definition 1.1. A Lévy process on G is a family {Xt : t ≥ 0} of G-
valued random variables (defined on the same probability space (Ω, µ))
such that

(i) X0 = e (almost surely);
(ii) the increments of the process are independent: i.e. if 0 ≤ s1 <

t1 ≤ · · · ≤ sn < tn then the random variablesX−1
s1
Xt1 , . . . , X

−1
sn Xtn

are independent;
(iii) the increments are identically distributed: for each s, t > 0 the

distribution of Xs and X−1
t Xt+s is the same;

(iv) the distribution of Xt tends weakly to that of X0 as t → 0+ –
for each f ∈ C0(G) (a complex-valued continuous function on
G vanishing at infinity)∫

G

f(g)dXt(g)
t→0+−→ f(e).

We can reformulate the definition above in terms of the increments.
Writing Xs,t for X−1

s Xt (0 ≤ s ≤ t) we obtain the following list of
conditions:

(i) Xs,s = e;
(ii) Xr,t = Xr,sXs,t (0 ≤ r ≤ s ≤ t);
(iii) the increments Xs,t are independent: if 0 ≤ s1 < t1 ≤ · · · ≤

sn < tn then the random variables Xs1,t1 , . . . , Xsn,tn are inde-
pendent;
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(iv) the increments are identically distributed – the distribution of
X0,s is identical to that of Xt,t+s;

(v) for each f ∈ C0(G)∫
G

f(g)dXs,t(g)
t→s+−→ f(e).

Note that once we pass to the two-parameter setup thinking about
the increments, we can just assume that G is a locally compact semi-
group.

All the probabilistic information about the process {Xt : t ≥ 0} is
contained in the collection {µt = dXt : t ≥ 0} of probability mea-
sures on G. It is easy to check that {µt : t ≥ 0} forms a convolution
semigroup: for all s, t ≥ 0 we have

µs ? µt = µs+t.

(the definition of the convolution will be recalled in Lecture 2). We call
it the Markov convolution semigroup of the process {Xt : t ≥ 0}; the
condition (v) implies that it satisfies a natural continuity condition at
t = 0.

Theorem 1.2 (Lévy-Khintchin). Each (continuous at 0) convolution
semigroup of probability measures (µt)t≥0 on Rn is given by the follow-
ing equation describing the characteristic functions of µt (t ≥ 0,−→u ∈
Rn):

φt(
−→u ) :=

∫
Rn

exp(i−→u · −→x )dµt(
−→x )

= exp

(
t

(
i
−→
b · −→u − 1

2
−→u · A−→u +

∫
Rn\{0}

[exp(i−→u · −→y )− 1− i−→u · −→y χBn(−→y )] dν(−→y )

))
,

where
−→
b ∈ Rn, A ∈ Mn(R) is a symmetric positive-definite matrix, ν

is a Lévy measure on Rn \ {0} (that is
∫
Rn(‖−→y ‖2 ∧ 1)dν(−→y ) < ∞),

and Bn denotes the ball {−→x ∈ Rn : ‖−→x ‖ ≤ 1}.
For more information on classical Lévy processes we refer for example

to the book [App].

1.2. Noncommutative mathematics. The concept of ‘noncommu-
tative mathematics’, initially motivated by the quantum theory and
popularised by the famous book [Con] of Alain Connes has now be-
come an inspiration for a very important and active area of research.
Its starting point is the idea of replacing the study of a given space
X (a topological space, a measure space, a manifold) by the study of
a suitable algebra of complex functions on it, and then following the
general scheme:
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(i) identify these commutative algebras which arise as the algebras
of functions in our class and show that their study is equivalent
to the study of spaces that we are interested in;

(ii) drop the commutativity assumption and consider the resulting
class of algebras as the algebras of functions on a ‘quantum
space’.

The fundamental example is given by the study of compact spaces.
For a given compact space X it is natural to consider all continuous
functions on it; equipped with the natural algebraic operations and
the usual supremum norm they form a commutative unital C∗-algebra
(a Banach algebra with involution which satisfies the C∗-condition –
‖a∗a‖ = ‖a‖2).

Theorem 1.3 (Gelfand-Najmark). Any commutative unital C∗-algebra
A is (isomorphic to) the algebra of continuous functions on a compact
space X. Moreover if Y is another compact space such that C(X) ≈
C(Y ) as a C∗-algebra, then X is homeomorphic to Y .

To conclude that the category of compact spaces is equivalent to the
category of commutative unital C∗-algebras it suffices to note two more
facts: if X, Y are compact spaces and T : X → Y is continuous, then
the map αT : C(Y )→ C(X) given by

αT (f) = f ◦ T, f ∈ C(Y ),

is a unital ∗-homomorphism; moreover for any unital ∗-homomorphism
α : C(Y )→ C(X) there exists a continuous map T : X → Y such that
α = αT .

Note the inversion of arrows!
Following the ideas described above, we can then say:

Arbitrary unital C∗-algebras — algebras of functions on ‘compact quantum spaces’

Similar results hold for locally compact spaces – we only need to
replace the commutative unital C∗-algebras by arbitrary commutative
C∗-algebras.

Theorem 1.4 (Gelfand-Najmark). Any commutative C∗-algebra A is
(isomorphic to) the algebra of continuous functions vanishing at in-
finity on a locally compact space X. Moreover if Y is another locally
compact space such that C0(X) ≈ C0(Y ) as a C∗-algebra, then X is
homeomorphic to Y .

To describe the appropriate morphisms we will need some more def-
initions.
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Definition 1.5. Let A be a C∗-algebra. The multiplier C∗-algebra
M(A) is the largest C∗-algebra containing A as an essential ideal (i.e.
a closed two-sided ideal such that if J is another ideal in M(A) and
A ∩ J = {0}, then J = {0}).

The multiplier algebra M(A) is always unital. If X is a locally com-
pact space and A = C0(X) (the algebra of continuous functions on X
vanishing at infinity), then M(A) ≈ Cb(X). If A ≈ K(H), the algebra
of compact operators on a Hilbert space H, then M(A) ≈ B(H) (the
algebra of all bounded operators on H). Apart from the norm topology,
M(A) is also equipped with another, so-called strict topology: we say
that the net (mi)i∈I of elements in M(A) tends to m ∈ M(A) strictly
if for each a ∈ A

mia −→ ma, ami −→ am in norm.

Exercise 1.1. Describe the strict topology in Cb(X) viewed as the mul-
tiplier algebra of C0(X) and in B(H) viewed as the multiplier algebra
of K(H).

If A,B are C∗-algebras and T : A→M(B) is a linear map then it is
called strict if it is bounded and strictly continuous on bounded subsets.
Each such strict map possesses a unique bounded strictly continuous

extension to a map T̃ : M(A) → M(B). A ∗-homomorphism T : A →
M(B) is said to be nondegenerate if the linear span of the elements
of the form T (a)b (a ∈ A, b ∈ B) is dense in B. Nondegenerate ∗-
homomorphisms are automatically strict; so are continuous functionals
on A.

Continuous maps between locally compact spaces X and Y cor-
respond to nondegenerate morphisms between C0(Y ) and Cb(X) =
M(C0(X)).

Exercise 1.2. Find an example showing that if X, Y are locally com-
pact but not compact and T : X → Y is a continuous map, then the
map αT introduced earlier need not map C0(Y ) into C0(X).

1.3. Topological quantum groups and semigroups. A topological
semigroup is a topological space X equipped with a continuous map
· : X×X → X, which is associative. As C0(X×X) ≈ C0(X)⊗C0(X),
the dual point of view suggests the following definition.

Definition 1.6. A compact quantum semigroup is a unital C∗-algebra
A equipped with a unital ∗-homomorphism ∆ : A → A ⊗ A which is
coassociative, that is:

(∆⊗ idA)∆ = (idA ⊗∆)∆.
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The tensor products above are minimal/spatial tensor products of
C∗-algebras.

Definition 1.7. A locally compact quantum semigroup is a C∗-algebra
A equipped with a nondegenerate ∗-homomorphism ∆ : A→M(A⊗A)
which is coassociative, that is:

(∆⊗ idA)∆ = (idA ⊗∆)∆.

Note that the equality above in fact uses strict extensions; both sides
take values in M(A⊗ A⊗ A).

Exercise 1.3. Check that if X is a locally compact space and T :
X×X → X is continuous, then the dual transformation αT : C0(X)→
Cb(X × X) ≈ M(C0(X) ⊗ C0(X)) is coassociative if and only if T is
associative.

We will always assume that our (locally) compact quantum semi-
groups have a counit, i.e. a character ε ∈ A∗ such that

(ε⊗ idA)∆ = (idA ⊗ ε)∆ = idA.

Exercise 1.4. Show that if G is a (locally) compact semigroup with
an identity element e, then the evaluation functional f → f(e) is the
counit of the quantum group C0(G).

For our purposes it will not be really necessary to work with topolog-
ical quantum groups. In fact finding a good definition for a topological
quantum group turned out to be a highly non-trivial task, with satis-
factory solutions found in the end for the compact case by Woronowicz
in [Wor] and for the general locally compact case by Kustermans and
Vaes in [KuV].

2. Lecture 2

2.1. Convolution semigroups of states. We have seen that in the
classical theory of Lévy processes an important role was played by the
Markov convolution semigroup of the process. Recall that if G is a
locally compact space, then the Riesz Theorem implies that bounded
regular measures can be identified with functionals on C0(G). If G is
a locally compact semigroup, then the convolution of measures µ and
ν is defined via the formula

(µ ? ν)(f) =

∫
G

f(st)dµ(s)dν(t), f ∈ C0(G).

Probability measures correspond to positive functionals on C0(G) of
norm 1.
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In fact one can also convolve bounded functionals on a locally com-
pact quantum semigroup A: if µ, ν ∈ A∗ we put:

µ ? ν = (µ⊗ ν)∆.

We use above the fact that the bounded functional µ ⊗ ν ∈ (A ⊗ A)∗

is automatically strict. The convolution operation ? : A∗ × A∗ → A∗

has the following properties (recall that a state on a C∗-algebra is a
positive functional of norm 1):

(i) ‖µ ? ν‖ ≤ ‖µ‖‖ν‖;
(ii) if µ and ν are states, so is µ ? ν;
(iii) it is associative: (µ ? ν) ? ω = µ ? (ν ? ω);
(iv) the counit ε satisfies ε ? µ = µ ? ε = µ.

In particular (A∗, ?) is a unital Banach algebra.

Definition 2.1. Let A be a locally compact quantum semigroup. A
family {λt : t ≥ 0} is called a convolution semigroup of states on A if

(i) each λt is a state on A;
(ii)

λs+t = λs ? λt, s, t ≥ 0;

(iii)

λt(a)
t→0+−→ λ0(a) = ε(a), a ∈ A.

It is said to be norm continuous if λt
t→0+−→ ε in norm.

If ω ∈ A∗ we will write ω?0 = ε, ω?1 = ω, ω?2 = ω ? ω and so on.

Theorem 2.2. Let {λt : t ≥ 0} be a norm continuous convolution
semigroup of states on a locally compact quantum semigroup A. Then
there exists a unique functional γ ∈ A∗, a so-called generating func-
tional, such that

λt = exp?(tγ) =
∞∑
n=0

tn

n!
γ?n, t ≥ 0.

The functional γ is hermitian (γ(a) = γ(a∗), a ∈ A), conditionally
positive (γ(a∗a) ≥ 0 if ε(a) = 0) and satisfies the condition γ̃(1M(A)) =
0 (note we use the strict extension here).

Proof. We give a proof in the case of unital A. Define for each t ≥ 0
the map Lt = (λt ⊗ idA)∆ : A → A. Then {Lt : t ≥ 0} form a norm
continuous semigroup of positive, unital maps on A. The general theory
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of contractive semigroups implies that there exists a unique bounded
map Γ : A→ A such that

Lt = exp(tΓ) =
∞∑
n=0

tn

n!
Γn, t ≥ 0.

Put γ = ε ◦ Γ. Check that γ satisfies all the conditions required in the
theorem. �

Exercise 2.1. Show that the generating functional of a norm continu-
ous convolution semigroup of states is hermitian, conditionally positive,
and vanishes at the identity.

It is natural to ask if every functional on A which is hermitian, condi-
tionally positive, and vanishes at the identity, is a generating functional
of some norm continuous convolution semigroup of states. We will come
back to it later.

2.2. Introduction to quantum probability.

Definition 2.3. A quantum probability space is a pair (B, ω), where
B is a unital C∗-algebra and ω : B→ C is a state on B.

We think of B as the algebra of functions on the ‘quantum’ proba-
bility space and about ω as the integral with respect to the ‘quantum’
probability measure. We could have also used the definition based on
von Neumann algebras or purely algebraic ∗-algebras.

A quantum random variable on a C∗-algebra A over a quantum prob-
ability space (B, ω) is a nondegenerate ∗-homomorphism j : A→ B; the
state ω ◦ j ∈ A∗ plays the role of the distribution of the quantum ran-
dom variable j. To speak about quantum Lévy processes we will also
need the notion of independence. This is in fact rather complicated, as
there are several possible quantum notions of independence. For our
purposes it will suffice to note that the weakest possible requirement
for the independence type condition is the factorization of moments:
given ‘independent’ quantum random variables j1, . . . , jn : A → B we
expect to have

ω

(
n∏
i=1

ji(ai)

)
=

n∏
i=1

(ω ◦ ji)(ai).

2.3. Quantum Lévy processes – definition based on distribu-
tions. The idea of defining quantum Lévy processes dates back to the
late 1980s, to the paper [ASW], where they were defined in the purely
algebraic context, for so-called ∗-bialgebras (the detailed treatments of
this theory can be found in [Sch] and [Fra]). Analytic difficulties force
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us in a way to work with the definition focusing on the distributions;
thus we will consider weak quantum Lévy process.

Definition 2.4. A (weak) quantum Lévy process on A over a quantum
probability space (B, ω) is a family

(
js,t : A → B

)
0≤s≤t of nondegener-

ate *-homomorphisms for which the states λs,t := ω ◦ js,t satisfy the
following conditions, for 0 ≤ r ≤ s ≤ t:

(i) λr,t = λr,s ? λs,t;
(ii) λt,t = ε;
(iii) λs,t = λ0,t−s;
(iv)

ω

(
n∏
i=1

jsi,ti(ai)

)
=

n∏
i=1

λsi,ti(ai)

whenever n ∈ N, a1, . . . , an ∈ A and the intervals [s1, t1[, . . . , [sn, tn[
are disjoint;

(v) λ0,t → ε pointwise as t→ 0+.

The family {λ0,t : t ≥ 0} is a convolution semigroup of states on A;
we call it a Markov convolution semigroup of the process. A quantum
Lévy process is called Markov-regular if λ0,t → ε in norm, as t→ 0+.

In a sense we do not want to distinguish between the processes which
carry the same probabilistic information.

Definition 2.5. Two quantum Lévy processes on A are said to be
equivalent if and only if their distribution functionals {λs,t : 0 ≤ s ≤ t}
and {λ′s,t : 0 ≤ s ≤ t} coincide.

Exercise 2.2. Show that two quantum Lévy processes are equivalent
if and only if their Markov convolution semigroups coincide. If the
processes in question are Markov regular, they are equivalent if and only
if the generating functionals of their Markov convolution semigroups
coincide.

Do quantum Lévy processes actually exist? We will construct some
examples and provide in fact a characterisation (up to equivalence) of
Markov-regular quantum Lévy processes in the next lecture.

3. Lecture 3

3.1. Quantum stochastics – general notations. In this lecture we
will very quickly introduce the definition of quantum stochastic pro-
cesses in the sense of Hudson and Parthasarathy and describe a special
class of quantum stochastic differential equations.
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Given a Hilbert space H, the symmetric Fock space over H, denoted
by F(H) is the Hilbert space arising as an infinite Hilbert space sum
of Hilbert spaces of symmetric tensors of rank n:

F(H) =
∞⊕
n=0

H⊗symn

Here H⊗sym0 is by definition equal to CΩ, where Ω is a fixed vector of
length 1, a so-called vacuum vector in F(H), and for each n ≥ 1 the
space H⊗symn is the closed subspace of the usual Hilbert space tensor
power H⊗n spanned by symmetric tensors. Probably the most impor-
tant property of this construction is a so-called exponential property
of the symmetric Fock space:

F(H1 ⊕ H2) ≈ F(H1)⊗F(H2).

Given a vector ξ ∈ H the associated exponential vector in F(H) is
defined as

exp(ξ) :=
∞∑
n=0

ξ⊗n√
n!
,

with the convention ξ⊗0 = Ω. The exponential vectors are linearly
independent and total in F(H); note that exp(0) = Ω.

Exercise 3.1. Guess how the exponential property of the Fock spaces
can be seen on the level of exponential vectors. Describe two possible
proofs of the exponential property. What happens to the respective
vacuum vectors under the natural isomorphism?

Let k be a fixed Hilbert space (a so-called noise dimension space) and
let Fk denote the symmetric Fock space over L2(R+; k). We can also
consider the natural subspaces of Fk, such as Fs,t,k := F(L2([s, t]; k))
or Fs,∞,k := F(L2([s,∞); k)) (here 0 ≤ s < t < ∞). When the noise
dimension space is clear from the context we omit it from the notation,
speaking only about F or Fs,t. The exponential property implies that
we have

F ≈ F0,s ⊗Fs,t ⊗Ft,∞.
The family of L2-spaces over the intervals is equipped with the natural
‘shift’ maps: st : L2(R+; k)→ L2([t,∞); k) given by

(stf)(r) = f(r − t), r ≥ t, f ∈ L2(R+; k).

These naturally lift to bounded maps between respective Fock spaces:
for each f ∈ L2(R+; k) we put

St(exp(f)) := exp(stf)
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and finally induce a semigroup of endomorphisms {σt : t ∈ R+} of
B(F) via the formula:

σt(X) = IF0,t ⊗ StXS∗t .

Definition 3.1. Let A be a C∗-algebra. By a Fock-space quantum
stochastic process on A we understand a family of bounded maps {jt :
A→ B(F0,t)⊗ IFt,∞ , t ≥ 0}.

Note that this definition contains a version of the adaptedness prop-
erty; one can view jt as an ‘adapted’ map taking values in B(F). We
need three more notational conventions: if H is a Hilbert space, and
ξ, η ∈ H, then ωξ,η denotes the functional given by the formula

ωξ,η(T ) = 〈ξ, Tη〉, T ∈ B(H).

We will write Ĥ := C ⊕ H and put ξ̂ :=
(

1
ξ

)
∈ Ĥ. Finally let S =

Lin{d1s,t : d ∈ k, 0 ≤ s < t} ∈ L2(R+; k).

3.2. Quantum stochastic differential equations. Let A be a lo-
cally compact quantum semigroup.

Definition 3.2. Let ϕ : A → B(k̂) be a bounded linear map. We say
that a a Fock-space quantum stochastic process {jt : t ≥ 0} satisfies
the QSDE (quantum stochastic differential equation)

(3.1) j0 = ε(·)IF , djt = ϕ ? dΛt

if for all functions f, g ∈ S, each a ∈ A and t ≥ 0
(3.2)

〈exp(f), (jt(a)−ε(a)IF) exp(g)〉 =

∫ t

0

ds(ωexp(f),exp(g)◦js)?(ωf̂(s),ĝ(s)◦ϕ)(a).

This definition might seem very strange; for the motivation, expla-
nations of the relation to the usual stochastic integration and many
examples of several types of QSDEs in various contexts we refer to the
lecture notes [Par] and [Lin]. The QSDE of the form (3.1) is sometimes
called coalgebraic.

Definition 3.3. We say that ϕ : A → B(k̂) is a structure map if for
all a, b ∈ A

ϕ(a∗) = ϕ(a)∗,

ϕ(ab) = ε(a)ϕ(b) + ϕ(a)ε(b) + ϕ(a)

[
0 0
0 Ik

]
ϕ(b),

ϕ(1A) = 0

(the last condition of course gets modified in the usual way when A is
non-unital).
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Exercise 3.2. Check what kind of the algebraic relations are satisfied
by ‘matrix entries’ of ϕ, if we write it as

ϕ =

[
γ δ
η π − ε(·)Ik

]
.

Theorem 3.4. Let ϕ : A→ B(k̂) be a structure map. Then the QSDE
(3.1) has a unique solution, which we will denote jϕ = {jt : A →
B(F), t ≥ 0}. Moreover each jt is a nondegenerate ∗-homomorphism.

The crucial fact for the existence of the solution is that each structure
map is automatically bounded; in fact it is completely bounded. Usu-
ally one considers the quantum stochastic differential equations whose
solutions a priori need not be bounded and are only defined on the
span of suitable exponential vectors. We refer for a detailed technical
treatment to the paper [LS2].

Theorem 3.5. If ϕ : A → B(k̂) is a structure map, then jϕ is a
quantum stochastic convolution cocycle, i.e.

j0(a) = ε(a)IF , a ∈ A,

(3.3) js+t =
(
js ⊗ (σs ◦ jt)

)
∆.

Note the identifications used in (3.3). The proof of the above result
is based on the analysis of so-called associated semigroups of jϕ. We
will see an example of them in the next result.

Corollary 3.6. Suppose that ϕ is a structure map and jϕ is the so-
lution of the QSDE (3.1). Let λt(a) = 〈Ω, jt(a)Ω〉, a ∈ A, t ≥ 0.
Then the family {λt : t ≥ 0} is a (norm continuous) convolution
semigroup of states, whose generator γ ∈ A∗ is given by the formula
a→ 〈

(
1
0

)
, ϕ(a)

(
1
0

)
〉.

Proof. Each λt is a state as a composition of a state ωΩ,Ω on B(F)
(a so-called vacuum state) and a nondegenerate ∗-homomorphism jt :
A→ B(F). Consider now the following string of equalities:

λs ? λt = (〈Ω, js(·)Ω〉 ⊗ 〈Ω, jt(·)Ω〉)∆
= (〈Ω0,s, js(·)Ω0,s〉 ⊗ 〈S∗sΩs,t, jt(·)S∗sΩs,t〉)∆
= 〈Ω0,s, js(·)Ω0,s〉 ⊗ 〈Ωs,t, σs ◦ jt(·)Ωs,t〉)∆
= 〈Ω0,s ⊗ Ωs,t, (js ⊗ σs ◦ jt)∆(·)Ω0,s ⊗ Ωs,t〉
= 〈Ω0,s+t, js+t(·)Ω0,s+t〉 = λs+t.
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The equation (3.2) for f = g = 0 gives

〈Ω, jt(a)Ω− ε(a)Ω〉 =

∫ t

0

ds(ωΩ,Ω ◦ js) ? (ω(1
0),(

1
0)
◦ ϕ)(a),

so in our notation

λt(a)− ε(a) =

∫ t

0

ds(λs ? γ)(a).

Differentiating of the above yields

γ = lim
t→0+

λt − ε
t

.

This ends the proof.
�

4. lecture 4

4.1. Fock space quantum Lévy processes. As the last result sug-
gests, solutions of quantum stochastic differential equations with the
‘stochastic generator’ given by a structure map are very closely con-
nected to quantum Lévy processes. This is formalised in the next result.
We assume that A is a fixed locally compact quantum semigroup.

Theorem 4.1. Let ϕ : A→ B(k̂) be a structure map, and let jϕ be the
solution of the QSDE (3.1). For each 0 ≤ s ≤ t put

js,t = σs ◦ jϕt−s : A→ B(Fs,t) ⊂ B(F).

Then the family {js,t : 0 ≤ s ≤ t} is a Markov-regular quantum Lévy
process over the quantum probability space (B(F), ωΩ). We call it a
Fock space quantum Lévy process.

Proof. A direct consequence of Theorems 3.4 and 3.5. �

Are structure maps easy to construct? In fact they all have a re-
markably simple form.

Theorem 4.2. Let ϕ : A → B(k̂) be a structure map. Then there
exists a nondegenerate representation π : A→ B(k) and a vector η ∈ k
such that:

ϕ(a)

[
〈η, π(a)η − ε(a)η〉 〈π(a∗)η − ε(a∗)η|
|π(a)η − ε(a)η〉 π(a)− ε(a)Ik

]
.

Conversely, each map of the above form is a structure map.
13



4.2. Schürmann Reconstruction Theorem. It turns out that in
fact all Markov-regular quantum Lévy processes can be realised on the
Fock space. This was first proved by Schürmann for purely algebraic
quantum Lévy processes ([Sch], see also [LS1]). The following version
comes from the papers [LS3] and [LS5].

Theorem 4.3 (Schürmann Reconstruction Theorem). Let
(
js,t : A →

B
)

0≤s≤t be a Markov regular quantum Lévy process. Then it is equiva-

lent to a Fock space quantum Lévy process.

Proof. Let γ ∈ A∗ be the generating functional of the process j. Due
to properties of γ stated in Theorem 2.2

q : (a, b) 7→ γ(a∗b)− γ(a)∗ε(b)− ε(a)∗γ(b)

defines a nonnegative sesquilinear form on A.
Let k and d : A → k be respectively the Hilbert space and induced

map obtained by quotienting A by the null space of q and completing,
so that

d(A) = k and 〈d(a), d(b)〉 = q(a, b), a, b ∈ A.

Further one can check that there are bounded operators π(a) on k
satisfying

π(a)d(b) = d(ab)− ε(b)d(a), a, b ∈ A.

Some more manipulations, using some automatic boundedness argu-
ments imply that the formula

ϕ(a) :=

[
γ(a) 〈d(a∗)|
|d(a)〉 π(a)− ε(a)Ik

]
, a ∈ A,

defines a structure map mapping A into B(k̂). Then the Fock space
quantum Lévy process jϕ constructed in Theorem 4.1 is equivalent to
the process j (as they have the same generating functionals). �

Corollary 4.4. Each hermitian, conditionally positive, and vanish-
ing at the identity bounded functional on a locally compact quantum
semigroup is a generating functional of a norm continuous convolution
semigroup of states.

4.3. General convolution semigroups of states – unbounded
generators. The last theorem together with Theorem 4.2 show that
we have a good understanding of the quantum Lévy processes which
have norm-continuous Markov convolution semigroups. To analyse the
general case we need first to understand ‘unbounded generating func-
tionals’ of convolution semigroups of states. We will just present two
theorems from [LS4] in a sense initiating such a study.

14



Definition 4.5. A locally compact quantum semigroup A is said to
satisfy the ‘residual vanishing at infinity’ property if

(A⊗ 1)∆(A) ⊂ A⊗ A and (1⊗ A)∆(A) ⊂ A⊗ A.

Note that the above property is trivially satisfied for compact quan-
tum semigroups. Also all locally compact quantum groups satisfy it.

Exercise 4.1. Prove that if G is a locally compact group then C0(G)
satisfies the ‘residual vanishing at infinity’ property.

Theorem 4.6. Let {µt : t ≥ 0} be a convolution semigroup of states
on a locally compact quantum semigroup A which satisfies the ‘residual
vanishing at infinity’ property. Define γ : Dom γ ⊂ A→ C by

Dom γ :=
{
a ∈ A : lim

t→0+

λt(a)− ε(a)

t
exists

}
;

γ(d) := lim
t→0+

λt(d)− ε(d)

t
, d ∈ Dom γ.

Then Dom γ is dense in A and the (linear) map γ determines {λt : t ≥
0} uniquely.

In some cases the situation becomes much simpler.

Definition 4.7. A locally compact quantum semigroup A is said to be
of discrete type if A is isomorphic to a direct (c0-type) sum of matrix
algebras.

Theorem 4.8. Let {µt : t ≥ 0} be a convolution semigroup of states
on a locally compact quantum semigroup of discrete type. Then it is
automatically norm continuous.

Using some advanced interpretations (see [Fra] or [LS5]) one may
say that the last theorem implies that all quantum Lévy processes on
discrete quantum semigroups are of compound Poisson type.

4.4. Further directions of research. We finish by listing a few fur-
ther results and directions of recent and current research :

• One can consider a wider class of quantum stochastic convolu-
tion cocycles. In fact all sufficiently regular completely positive
and contractive quantum stochastic convolution cocycles satisfy
QSDEs of the type described earlier, with ‘coefficients’ given by
completely bounded maps (but not necessarily having the form
of a structure map).
• Each Markov-regular Fock space quantum Lévy process can be

approximated in a natural strong sense by ‘quantum random
walks’, which can be thought of as discrete quantum stochastic

15



evolutions; these can be studied as independent objects, which
leads to connections to other areas of ‘probability on quantum
groups’.
• It is natural to search for quantum versions of Lévy-Khintchine

formula. They should describe a general form of a convolution
semigroup of states on a given quantum (semi)group and is
known for example for SUq(2) ([ScS]).
• As already mentioned, the most challenging problems are those

given by the study of quantum Lévy processes which are not
Markov regular. Here we cannot really hope for a general the-
ory; one should rather focus on concrete examples.
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[Fra] U. Franz, Lévy processes on quantum groups and dual groups, in “Quantum
Independent Increment Processes, Vol. II: Structure of Quantum Lévy Pro-
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