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Abstract. The notes are concerned with the famous Christensen-Evans the-

orem characterising generators of norm continuous completely positive semi-

groups on C∗-algebras. A full(ish) proof is given.

In these notes we are interested in properties of generators of semigroups of
operators on operator algebras satisfying certain algebraic properties. Let us start
with quoting the fundamental result on generators of homomorphisms:

Theorem 0.1. Let B be a Banach algebra, {Pt : t ≥ 0} a c0-semigroup on B. The
following are equivalent:

(i) each Pt is a homomorphism;
(ii) the generator L of {Pt : t ≥ 0} is a derivation, that is Dom(L) is a subal-

gebra of B and for all a, b ∈ Dom(L)

L(ab) = aL(b) + L(a)b.

Characterisation of all derivations is a difficult (if not hopeless) task. Further
we are interested in the bounded case, but instead of looking at homomorphisms
we will extend the context to (completely) positive semigroups.

Further A will usually denote a C∗-algebra, and M will be used for von Neumann
algebras. The notation E is used for the ultraweak closure of a set E ⊂ B(h) (or
the usual norm closure if E is a subset of h).

1. Algebraic properties of generators of norm continuous
(completely) positive semigroups

Let us start discussing the basic algebraic properties of generators of positive
semigroups. Fix for this section a C∗-algebra A.

Lemma 1.1. Let L : A → A be bounded and real (the latter means that L(a∗) =
L(a)∗ for all a ∈ A). The following are equivalent:

(i) the semigroup generated by L is positive (i.e. consists of positive operators);
(ii) L is conditionally positive: for all a, b ∈ A if ab = 0 then b∗L(a∗a)b ≥ 0;

Additionally, if A is unital they are also equivalent to the condition
(iii) for all a ∈ Ah

L(a2) + aL(1)a ≥ L(a)a+ aL(a).

Proof. The implication (i)⇒(ii) is trivial; (ii)⇒(i) may be proved via looking at
the resolvent family. To deduce (iii) from (i) one considers the (unital) semigroup
generated by L′ = L+ {− 1

2L(1), ·}. The Kadison-Schwarz inequality for the latter
yields the desired inequality. Finally the implication (iii)⇒(ii) may be deduced by
working with states on A and applying several times Schwarz inequality. �
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Definition 1.2. Let B be a C∗-algebra. A linear map T : A → B is called com-
pletely positive if for each n ∈ N the map T (n) : Mn(A) → Mn(B) defined by
T (n)[aij ]ni,j=1 = [T (aij)]ni,j=1 is positive. It is called conditionally completely posi-
tive if for all n ∈ N and all a1, . . . , an ∈ A, b1, . . . , bn ∈ B such that

∑n
i=1 aibi = 0

the following inequality holds:

(1)
n∑

i,j=1

b∗i T (a∗i aj)bj ≥ 0.

One can show that in fact T : A → B is completely positive if and only if condition
(1) holds for arbitrary n ∈ N, a1, . . . , an ∈ A, b1, . . . , bn ∈ B.

Definition 1.3. Let X be a set, h a Hilbert space. A map K : X ×X → B(h) is
called a positive-definite kernel (on X) if for all n ∈ N, x1, . . . , xn ∈ X the matrix
[K(xi, xj)]ni,j=1 ∈Mn(B(h)) is positive.

Lemma 1.4. Let L : A → A be bounded and real. The following are equivalent:
(i) L is conditionally completely positive;
(ii) for all a ∈ A the map Ka : A× A → A defined by (s, t ∈ A)

Ka(s, t) = L(s∗a∗at) + s∗L(a∗a)t− L(s∗a∗a)t− s∗L(a∗at)

is a positive-definite kernel;
(iii) the map K : (A× A)× (A× A) → A defined by (s1, s2, t1, t2 ∈ A)

K((s1, s2), (t1, t2)) = L(s∗t∗1t2t) + s∗1L(s∗2t1)t2 − L(s∗1s
∗
2t1)t2 − s∗1L(s∗2t1t2)

is a positive-definite kernel.

Proof. Here (iii)⇒(ii) is trivial, (ii)⇒(i) is a simple computation + the existence
of approximate identity, and (i)⇒(iii) is obtained by ‘doubling the dimension’ and
judicious choice of elements used in the conditional complete positivity condition.

�

Theorem 1.5. Let L : A → A be bounded and real. The following are equivalent:
(i) the semigroup generated by L is completely positive (i.e. consists of positive

operators);
(ii) L is conditionally completely positive.

Proof. As in Lemma 1.1, (i)⇒(ii) is trivial. Going to the double dual allows to
assume that A is unital, and then it is enough to compares condition (iii) of Lemma
1.1 applied to the semigroup P

(n)
t : Mn(A) → Mn(A) with the condition (ii) of

Lemma 1.4. �

The imprtance of the notion of a positive definite kernel lies in the following
construction:

Theorem 1.6 (Minimal Kolmogorov Construction). Let X be a set, h a Hilbert
space and K : X ×X → B(h) a positive-definite kernel. Then there exist (unique
up to unitary equivalence) a Hilbert space k and a map λ : X → B(h; k) such that

(i) K(x, y) = λ(x)∗λ(y) for all x, y ∈ X;
(ii) k = Lin{λ(x)ξ : x ∈ X, ξ ∈ h}.

The theorem above allows for the first algebraic characterisation of the generators
of completely positive semigroups and in particular provides the connection with
derivations on A.
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Lemma 1.7. Let A ⊂ B(h) and suppose that L : A → A is bounded, real, and
conditionally completely positive. There exist a representation of A, denoted further
by {π, k} and a linear map V : A → B(h; k) such that for all a, b, c ∈ A

(i) L(abc) + aL(b)c− aL(bc)− L(ab)c = V (a∗)∗π(b)V (c), a, b, c ∈ A;
(ii) V (ab) = π(a)V (b) + V (a)b, a, b ∈ A;
(iii) k = Lin{π(a)V (b)ξ : a, b ∈ A, ξ ∈ h}

Proof. The starting point is the Kolmogorov construction applied to the positive
definite kernel from Lemma 1.4 (iii). This provides a Hilbert space k and a Kol-
mogorov map λ : A × A → B(h; k). If A is unital, maps V and π are given by the
formulas:

π(a)λ(a1, a2) = λ(aa1, a2), V (a) = λ(a, 1)

(a, a1, a2 ∈ A); otherwise limit constructions exploiting either the multiplier algebra
or approximate unit are used. The algebraic properties of π and V follow essentially
from the uniqueness of the minimal Kolmogorov construction. �

All the results above are essentially algebraic, and may be found (mostly with
proofs) in [EvL].

2. Automatic continuity properties of derivations on C∗-algebras

In this section we discuss basic continuity properties of derivations on C∗- and
W ∗-algebras.

Theorem 2.1 ([Ri1]). Let A be a C∗-algebra and X a Banach A-bimodule. If a
linear map δ : A → X is a derivation, then it is continuous.

Proof. Define J = {a ∈ A : t→ δ(at) is continuous} = {a ∈ A : t→ aδ(t) is continuous}.
It is a twosided ideal, and δ|J is continuous. Consider the algebra A/J . It has to
be finite-dimensional - otherwise it would contain an infinite-dimensional commu-
tative C∗-algebra and therefore would contain a selfadjoint operator with infinite
spectrum. Basic considerations based on the spectral theorem would allow then to
produce contradiction. �

A Banach A-bimodule X is called a dual bimodule if X is a dual Banach space
and the maps m→ ma, m→ am are weak*-continuous for all a ∈ A. If additionally
A ⊂ B(h) and the maps a→ ma, a→ am are ultraweak-weak*-continuous for each
m ∈ X, X is called normal.

Theorem 2.2 ([Ri1]). Let (π, h) be a faithful representation of a C∗-algebra A

and let X be a dual normal π(A)-bimodule (π(A) denotes the ultraweak closure of
π(A)). If a linear map δ : π(A) → X is a derivation, then it is ultraweakly-weak*
continuous.

Proof. The proof is based on considering the universal representation πu of A and
using two fundamental facts from the theory of universal representations: each
two-sided ideal in πu(A) corresponds to a projection in the centre of πu(A) and
each continuous functional on πu(A) is ultraweakly continuous. These after certain
technical manipulations allow to reduce the problem to the norm continuity, which
was established in the previous theorem. �
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Lemma 2.3 ([Ri2]). Suppose that there exists a subgroup of the unitary group of
A, which is amenable and whose norm closed linear span is the whole A Then every
derivation of A with values in a dual A-bimodule X is inner.

Proof. Suppose that V is a subgroup with the properties described above. Amenabil-
ity and the fact that M is dual allows to define an ‘invariant’ contractive linear
mapping µ : Cb(V ;X) → X. Then if δ : V → X is a derivation, define f : V → X
by f(v) = v∗δ(v) (v ∈ V ). The element m = µ(f) implements δ. �

Corollary 2.4. Suppose that A is either commutative or (isomorphic to) the I∞
factor. Then every derivation of A with values in a dual A-bimodule X is inner.

Proof. If A is commutative, its unitary group is clearly amenable. If A is a hyper-
finite factor, an approximation argument is needed. �

3. Property D and innerness of derivations on properly infinite von
Neumann algebras

Before we pass to the formulation and proof of the C-E Theorem in the final
section, we need to discuss a series of results due to E. Christensen closely related
to certain perturbation theorems for maps on C∗-algebras. The techniques here are
typical for the theory of von Neumann algebras.

Definition 3.1. Let M ⊂ B(h) be a von Neumann algebra. M has (Schwartz)
property P if for any x ∈ B(h)

co{u∗xu : u ∈ U(M)} ∩M ′ 6= ∅.
M has property D0 if there exists k > 0 such that for all x ∈ B(h)

‖δx|M‖ ≤ d(x,M ′) ≤ k‖δx|M‖,
where

δx(y) = xy − yx, y ∈ B(h).
Finally M has property D if M ⊗ Il2 ⊂ B(h⊗ l2) has property D0.

The lemma below explains the immediate connection between the properties
above and the derivations.

Lemma 3.2. Let M ⊂ B(h) be a von Neumann algebra. If every derivation on M
with values in B(h) is inner then M has property D0.

Proof. Consider the vector space B(h)/M ′ with the norm ‖|[x]‖| = ‖δx|M‖. Then
(B(h)/M ′, ‖| · ‖|) is isometrically isomorphic with the space of all inner derivations
δ : M → B(h). If the latter coincides with the space of all derivations, it is
complete. Therefore the norm (‖| · ‖|) has to be equivalent to the canonical norm
on B(h)/M ′. �

Recall two following properties of properly infinite von Neumann algebras. Every
properly infinite vN algebra contains a copy of the I∞ factor; more specifically it
is isomorphic to a tensor product of the I∞ factor with another von Neumann
algebra (this can be deduced from Proposition V.1.22 in [Tak] and Proposition
4.12 of [StZ]). Moreover if M is properly infinite then every normal functional on
M ′ is a vector functional (Theorem 8.16 of [StZ]). This(*) allows to obtain one
more automatic continuity results. Recall that if N is a von Neumann algebra
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then the ultrastrong topology on N is the one induced by the family of seminorms
x→ |φ(x∗x)| 12 , φ ∈ N∗.

Lemma 3.3. Let M ⊂ B(h) be a properly infinite von Neumann algebra. Every
derivation δ : M → B(h) is ultrastrongly-ultrastrongly continuous.

Proof. We can assume that δ is nonzero. As M is assumed to be properly infinite,
it contains a copy of the I∞ factor, call it R. Using Corollary 2.4 we may assume
that δ vanishes on R. Further R contains an infinite family of isometries with
orthogonal ranges: there exists a sequence (vi)∞i=1 such that vi ∈ R, v∗i vi = I,
v∗i vj = 0 for all i, j ∈ N, i 6= j. Exploiting the isometries above one can show that
for any n ∈ N, x1, . . . , xn ∈M

‖
n∑

j=1

x∗jxj‖ ≥ ‖δ‖−2‖
n∑

j=1

δ(xj)∗δ(xj)‖.

Let now φ ∈ B(h)+∗ be nonzero and define S1 = {x ∈ M : φ(δ(x)∗δ(x)) = 1},
S2 = co{x∗x : x ∈ S1}. Then for any y ∈ S2 there is ‖y‖ ≥ ‖φ‖−1‖δ‖−2 and a
Hahn-Banach type argument yields the existence of a hermitian functional ψ ∈M∗

such that ψ(y) ≥ 1 whenever y ∈ S2 (hermitianity may be obtained as S2 contains
only selfadjoint operators). Let ω be the positive part of ψ. It is now easy to
check that φ(δ(x)∗δ(x)) ≤ ω(x∗x) for all x ∈ M . Let ω = ωn + ωs denote the
decomposition of ω into normal and singular parts. Using the fact that the kernel
of each singular positive functional contains a family of projections increasing to I
(Theorem 3.8 in [Tak]) and Cauchy-Schwarz inequality we can deduce that actually
φ(δ(x)∗δ(x)) ≤ ωn(x∗x) for all x ∈M . This suffices to conclude the proof. �

Lemma 3.4. If M ⊂ B(h) is the I∞ factor then M has property P .

Proof. Each type In factor (an isomorphic copy of Mn) has property P , as its
unitary group is compact and averaging any operator on h with respect to the
action of the unitary group (equipped with its Haar measure) provides an element
in the commutant of M . To obtain the conclusion it suffices therefore to show that
the property P is stable under taking unions (in the von Neumann category). This
follows from a straightforward weak∗-compactness argument. �

Lemma 3.5. If M ⊂ B(h), x ∈ B(h) and (x ∪ x∗ ∪M)′ is properly infinite, then
‖δx|M‖ = 2d(x,M ′).

Proof. Write B = (M ′ ∪ x ∪ x∗)′′. Then each normal functional on B is a vector
functional. Moreover if f ∈ B∗ vanishes on M ′ one can assume that f(·) = 〈ξ, ·η〉
for some ξ, η ∈ h such that pξ = 0, pη = η, where p ∈ M denotes the projection
onto the subspace [M ′η]. Exploiting the (Hahn-Banach type) formula

d(x,M ′) = sup{|f(x)| : f ∈ B∗, ‖f‖ = 1, f |M ′ = 0}

yields the desired conclusion. �

Lemma 3.6. If M ⊂ B(h) has property P then for all x ∈ B(h)

‖δx|M‖ ≤ 2d(x,M ′) ≤ 2‖δx|M‖.

Proof. Fix x ∈ B(h). For any u ∈ U(M) there is

‖u∗xu− x‖ = ‖δx(u)‖ ≤ ‖δx|M‖.
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Therefore for all z ∈ co{u∗xu : u ∈ U(M)} there is ‖z−x‖ ≤ ‖δx|M‖ and the result
follows. �

The following result is key to proving the crucial statement of this section, The-
orem 3.10.

Theorem 3.7. Let M ⊂ B(h) be a von Neumann algebra. If M is properly infinite
then for all x ∈ B(h)

‖δx|M‖ ≤ 2d(x,M ′) ≤ 3‖δx|M‖.
In particular M has property D.

Proof. Let C be a copy of the I∞ factor and M = C⊗D for some other von
Neumann algebraD. Arguing as in the last lemma we see that there is y ∈ co{u∗xu :
u ∈ U(M)} ∩ (C⊗I)′ such that ‖x − y‖ ≤ ‖δx|M . Further for any u ∈ U(C) and
a ∈M

‖u∗xua− au∗xu‖ = ‖xuau∗ − uau∗x‖ ≤ ‖δx|M‖‖a‖.
This means that ‖δu∗xu|M‖ ≤ ‖δx|M‖, so also ‖δy|M‖ ≤ ‖δx|M‖. Note now that as
y ∈ (C⊗I)′ = I⊗D, the algebra (M ∪ y ∪ y∗)′ is equal to C⊗N , where N is a von
Neumann subalgebra of D. By Lemma 3.5

d(y,M ′) =
1
2
‖δy|M‖ ≤ 1

2
‖δx|M‖,

so that
d(x,M ′) ≤ ‖x− y‖+ d(y,M ′) ≤ 3

2
‖δx|M‖.

�

Lemma 3.8. Let M ⊂ B(h) have property D0 and let δ : M → B(h) be a deriva-
tion. There exists a projection p ∈M ′ such that

{x ∈M ′ : xδ is inner } = M ′p.

Moreover if δ is hermitian then for any q, s ∈ PM ′ the derivation qδs is inner if
and only if q ≥ p⊥ and s ≥ p⊥.

Proof. For the first part note that the set I := {x ∈M ′ : xδ is inner } is a left ideal
of M ′. Whenever (qα) is an increasing set of projections, its supremum is in I -
this is where the property D0 is used, as we need a common bound on operators
implementing qαδ. Put p = sup{q ∈ PM ′ : q ∈ I}. Note that if x ∈ I then its
right support r(x) = χR\{0}(x∗x) is also in I (this exploits the approximation by
polynomials in x∗x with the vanishing constant term). This suffices to deduce that
I = M ′p.

For the second part note that if δ is hermitian and x ∈M ′ then xδ is inner if and
only if δx∗ is inner, so that {x ∈M ′ : δx is inner } = pM ′. The rest is easy. �

The next lemma shows that if an algebra has property D0 then every derivation
on A induced by a commutator with an unbounded operator is actually inner (i.e.
the unbounded operator may be replaced by a bounded one).

Lemma 3.9. Let A ⊂ B(h) be a unital C∗-algebra with property D0 and let
T : DT → h be a closed densely defined operator such that its domain DT is left
invariant by operators in A. Suppose that for each a ∈ A the operator aT − Ta is
bounded. Then there exists x ∈ B(h) such that for all a ∈ A

aT − Ta = ax− xa.
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Proof. Note first that the map δ : A → B(h) defined by

δ(a) = aT − Ta, a ∈ A,

is a derivation, so in particular by Theorem 2.1 it is bounded.
Let S be a closed densely defined operator on a Hilbert space k. Then the opera-

tors (I+S∗S)−1, S(I+S∗S)−1 are well defined contractions. It is clear that Ran(I+
S∗S)−1 ⊂ Dom(S∗S). Moreover it can be shown that Ran(I + S∗S)−1S∗) ⊂
Dom(S). Finally the projection on the graph of S in k ⊕ k is given by the fol-
lowing formula:

PS =
[

(I + S∗S)−1 (I + S∗S)−1S∗

S(I + S∗S)−1 S(I + S∗S)−1S∗

]
.

The last formula follows from the fact that the graph of S is the orthogonal com-
plement of the image of the graph of S∗ via the unitary U : k ⊕ k → k ⊕ k,
U(k1, k2) = (k2,−k1). Moreover S|Dom(S∗S) is closable and S|DS∗S

= S. Full
proofs of all these statements can be found for example in [RS-N].

Let us return to the context of our lemma. Let [T ] denote the range projection
of T , let T = V (T ∗T )

1
2 be the polar decomposition of T . For each s > 0 write PsT

for the orthogonal projection onto the graph of sT and let Ks = sT (I + s2T ∗T )−1.
Further KsT ∗T |Dom(T∗T ) = KsT

∗T , KsT ∗TT
∗TKs and KsT ∗T |Dom(T ) = KsT ∗T .

The first one is easy to see, the second follows from the fact that Ks is a function
of a selfadjoint operator T ∗T and the third is a consequence of T |DT∗T

= T and
obvious closability of KsT

∗T . Note also the following equalities:

Ih −Ks = s2T ∗TKs,

V KsV ∗T = V KsV ∗T = V Ks(T ∗T )
1
2 = V (T ∗T )

1
2Ks = TKs,

[T ]− V KsV
∗ = V (Ih −Ks)V ∗ = V (s2T ∗TKs)V ∗

= s2V (T ∗T )
1
2Ks(T ∗T )

1
2V ∗ = s2TKsT ∗.

Together with the described earlier formula for the projection on the graph of a
closed densely defined operator they imply the following

PsT =
[
Ks sKsT ∗

sTKs s2TKsT ∗

]
,

Ih⊕h − PsT =
[
s2T ∗TKs −sKsT ∗

−sTKs (Ih − [T ]) + V KsV
∗

]
.

Let A(2) := {
[
a 0
0 a

]
: a ∈ A}. For all Xa =

[
a 0
0 a

]
∈ A(2) we have (again exploiting

the formulas listed before)

((I − PsT )XPsT )11 = s2T ∗TKsaKs − sKsT ∗asTKs = sKsT ∗(sTa− asT )Ks,

((I − PsT )XPsT )12 = s2T ∗TKsasKsT ∗ − sKsT ∗as
2TKsT ∗

= sKsT ∗(sTa− asT )sKsT ∗,

((I − PsT )XPsT )21 = −sTKsaKs + (Ih − [T ] + V KsV
∗)asTKs

= V KsV
∗(asT − sTa)Ks + (Ih − [T ])(asT − sTa)Ks,

((I − PsT )XPsT )22 = −sTKsasKsT ∗ + (Ih − [T ] + V KsV
∗)as2TKsT ∗

= V KsV
∗(asT − sTa)sKsT ∗ + (Ih − [T ])(asT − sTa)sKsT ∗.
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This implies that for all i, j = 1, 2

‖((I − PsT )XPsT )ij‖ ≤ 2s‖δ(a)‖ ≤ 2s‖δ‖‖Xa‖.
Further

‖δPsT
|A(2)‖ = sup{‖(Ih⊕h − PsT )XPsT ‖ : X ∈ A(2)} ≤ 4s‖δ‖.

Analysing the 2, 1-coefficient of PsTX −XPsT we obtain that

‖δTKs |A‖ ≤ 4‖δ‖.
As A was assumed to have property D0 there exists C > 0 such that for all s > 0
there exists xs ∈ B(h)′ such that ‖xs‖ ≤ C, xs + TKs ∈ A′. Choose a subnet
{sι : ι ∈ J } convergent to 0 and such that {xsι : ι ∈ J } weak* converges to an
operator x ∈ B(h). Then for any ξ ∈ DomT , η ∈ H, and a unitary u ∈ A

〈(T + x)ξ, η〉 = lim
ι∈J

〈(TKsι + xsι)uξ, uη〉 = 〈(T + x)uξ, uη〉.

This implies that
xa− ax = aT − Ta, a ∈ A.

�

We are ready to formulate and prove the main theorem of the section.

Theorem 3.10 ([Ch2]). Let M ⊂ B(h) be a properly infinite von Neumann algebra.
Every derivation δ : M → B(h) is inner.

Proof. Using Lemma 2.4 we can assume that δ|Z(M) = 0. Considering separately
δ + δ† and i(δ − δ†) we can assume that δ is hermitian. As M has property D0,
exploiting Lemma 3.8 we can further assume that {x ∈ M ′ : xδ is inner } = {0}.
Finally considering the diagonal derivation δ∞ on M ⊗ Il2 we can also assume that
M ′ is also properly infinite.

Suppose first that M has a cyclic vector ξ ∈ h. By Lemma 3.3 the map Φ : M →
B(h)⊗M2 given by

Φ(r) =
[
r 0
δ(r) r

]
, r ∈M,

is an ultrastrongly continuous homomorphism. This means that there exists ψ ∈M∗
such that for all r ∈M

(2) ‖rξ‖2 + ‖δ(r)ξ‖2 =
∥∥∥∥[

r 0
δ(r) r

] [
ξ
0

]∥∥∥∥2

≤ ψ(r∗r).

Let η ∈ h be such that ψ(r) = 〈η, rη〉 (r ∈M). Put C = Φ(M) and let

L =
{[

r 0
δ(r) r

] [
ξ
2η

]
: r ∈M

}
.

Further let q ∈ B(h) be the orthogonal projection onto L ∩ (0⊕ h). One can show
that q ∈M ′. Put

G =
[
I 0
0 q⊥

]
L.

Then G is the graph of a closed densely defined operator T , which satisfies the
following property: if (γ1, γ2) ∈ L then γ1 ∈ Dom(T ) and Tγ1 = q⊥γ2. If h is
nontrivial then q cannot be equal to Ih. Indeed, as the inequality (2) implies that
for all r ∈M

‖δ(r)ξ + 2rη‖ ≥ ‖rξ‖,
8



so that for all (γ1, γ2) ∈ L there is ‖γ1‖ ≥ ‖γ2‖. But if q = Ih then L = h⊕ h and
we reach contradiction.

Define a subalgebra of B(h⊕ h) by

D =
{[

r 0
q⊥δ(r) r

]
: r ∈M

}
.

Then G is left invariant by D so that for any γ ∈ Dom(T ) and r ∈M

rγ ∈ Dom(T ). γ = q⊥δ(x)γ) + xTγ.

Lemma 3.9 implies therefore that q⊥δ is inner and as q⊥ 6= 0 we have reached the
contradiction unless h = {0}. In the latter case δ is obviously inner.

It remains to show that the cyclicity assumption may be dropped. Let P denote
the family of all projections p ∈ PM ′ such that p is σ-finite with respect to M ′ and
M ′

p is properly infinite. Given p, q ∈ P the projection p∨ q belongs to P, moreover
for any σ-finite projection s ∈M ′ there is p ∈ P such that p ≥ s.

Consider p ∈ P. As Mp is properly infinite (consider the tensor decomposition
involving the I∞ factor), M ′

p has a faithful vector state ωξ. Vector ξ is then cyclic
for Mp and the derivation δp : Mp → B(ph) given by δp(rp) = pδ(r)p (r ∈ M) is
implemented by xp ∈ B(ph), ‖xp‖ ≤ 2‖δ‖ (seee Lemma 3.7). Considering all xp as
acting on B(h) we obtain a bounded family indexed by P. Further as we can find
in P a net strongly convergent to I and

pδ(r)p = xpr − rxp, p ∈ P, r ∈M,

a standard weak* approximation argument ends the proof.
�

4. Christensen-Evans Theorem - formulation and proof

Theorem 4.1 (Christensen-Evans Theorem). Let A ⊂ B(h), {π, k} be a represen-
tation of A and V : A → B(h; k) a linear map such that for all a, b ∈ A

(i) V (a)∗V (b) ∈ A
(ii) V (ab) = π(a)V (b) + V (a)b.

Then there exists an operator r ∈ Lin{V (a)b : a, b ∈ A} such that

V (a) = ra− π(a)r, a ∈ A.

Proof. We may assume that Ih ∈ A (otherwise consider what happens only on the
‘support’ of A). Let δ : Â := (idA ⊕ π)(A) → B(h⊕ k) be given by the formula

δ

([
a 0
0 π(a)

])
=

[
0 0

V (a) 0

]
, a ∈ A.

Let p = Ph ∈ B(h⊕ k), B = C∗(Â, δ(Â), p), M = Â, N = B. To prove the theorem it
is enough to establish that δ is implemented by some x ∈ (I−p)Np - this statement
follows from the easily established fact that N can be explicitly described as a
certain algebra of matrices whose bottom left corners lie in V (A)A. By Lemma 2.3
one can assume that δ|Z(M) = 0. This allows to exploit the unique decomposition
of M into finite and properly infinite parts and consider both cases separately.

Case 1: M finite. Denote the unitary group of M by U(M) and let C =
co{u∗δ(u) : u ∈ U(M)}. For each u ∈ U(M) let Tu : C → C be an affine map
given by T (c) = u∗cu+u∗δ(u). It is easy to check that {Tu, u ∈ U(M)} is a group.
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As C is weak*-compact, and the existence of the center-valued trace on M allows
to prove that the group in question is noncontracting, Ryll-Nardzewski fixed point
theorem implies that there is c0 ∈ C which is a fixed point for all Tu. The element
c0 may be easily shown to implement δ.

Case 2: M properly infinite. By Theorem 3.10 there exists y ∈ B(h ⊕ k) im-
plementing δ. It remains to show that one can replace it with an operator in N .
The proof is based on arguments of [Kad]. Note first that the implementing oper-
ator may be chosen so that it has totally minimal norm, that is for all e ∈ Z(N)
the operator ye has minimal norm among those which implement the derivation
m→ δ(m)e. This exploits first the weak-operator lower semicontinuity of the norm
(so that for a given inner derivation there is an operator implementing it which has
a minimal norm), and then uses the weak∗-limit argument for a net of operators,
each of which has minimal norm with respect to a given decomposition of 1N into
finite central projections.

In the next step we observe that as p ∈ M ′ if y has totally minimal norm, we
can aditionally assume that y = p⊥yp. Further let e ∈ PN ′ . There exists a family
{ej : j ∈ J } of pairwise orthogonal projections in N ′ such that

∑
j∈J ej = c(e)

and ej � e for each j ∈ J . Considering the element ye =
∑

j∈J vjyv
∗
j , where each

vj is a partial isometry with the initial space contained in eh and target space equal
to ejh, we can show that ye implements the derivation m→ δ(m)e. Now the total
minimal norm assumption implies that ‖yc(e)‖ ≤ ‖ye‖ and so

‖ye‖ = ‖eye‖ = ‖yc(e)‖.

It is easy to check that δ : N ′ →M ′. Suppose that y /∈ N . There must then exist
e ∈ N ′ such that [y, e] 6= 0. One can assume that M ′ 3 e⊥ye 6= 0. The operator
ey∗e⊥ye is a nonzero element of pM ′p = (M ′)p = (Mp)′ = (Np)′ = N ′

p. This
implies the existence of (a unique) x ∈ N ′

+ such that xp = ey∗e⊥yeand xc(p) = x.
Let r > 0 and f ∈ PN ′ be such that x ≥ rf . Then f ≤ c(p) and ep ≥ fp. This
suffices to deduce that

‖fy∗eyf‖ = ‖eyf‖2 ≥ ‖yf‖2 = ‖p(fy∗eyf)p+pfxfp‖ > ‖p(fy∗eyf)p‖ = ‖fy∗eyf‖,

which yields a contradiction.
�

Remark 4.2. The analysis of the proof allows to deduce the following result:
suppose that A ⊂ B(h) is a C∗-algebra, p is a projection in A′, δ : A → p⊥B(h)p
is a derivation and for all a, b ∈ A, δ(a)∗δ(b) ∈ pAp. Then δ is implemented by an
operator in Lin{δ(A)A}.

The theorem above leads to the characterisation of the structure of generators
of norm continuous completely positive semigroups.

Corollary 4.3. Let A be as above and L : A → A be bounded, real. The following
are equivalent:

(i) L is conditionally completely positive;
(ii) there exists a completely positive map Ψ : A → A and an operator k ∈ A

such that

L(a) = Ψ(a) + k∗a− ak, a ∈ A.
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Proof. The implication (ii)=⇒(i) is trivial. If (i) holds, Lemma 1.7 yields π and
V which satisfy the assumptions of Theorem 4.1 (Kaplansky theorem is used to
obtain ‘minimality’). Suppose that r implements V and let Ψ = r∗π(·)r. If A is
unital, put h = 1

2 (L(I)−ψ(1)). Then δ := L−Ψ−{h, ·} is a selfadjoint derivation
and as such is implemented by a skewadjoint element g ∈ A (use again Theorem
4.1). Putting k = h− g ends the proof.

For A nonunital one once again uses approximate units and weak*-limit points
of appropriate nets in B(h). �

The content of the notes was (in a more or less able manner) presented by AS
at the series of seminars at Lancaster University, academic year 2006/2007.
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