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Plan of the lectures

Lecture 1 Haagerup property for locally compact groups – basic characterisations: condi-
tionally negative definite and positive definite functions, mixing representations, isometric
affine actions; definition of the Haagerup property (HAP); fundamental examples.

Lecture 2 Haagerup property for locally compact groups – advanced characterisations:
HAP via ‘typical’ representations; group von Neumann algebras and Schur multipliers
associated to positive definite functions; Choda’s characterisation of HAP.

Lecture 3 Haagerup property for locally compact quantum groups: extending the study of
HAP to the context of locally compact quantum groups.

The lectures should be accessible to the audience having a general functional analytic back-
ground.
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1. Lecture 1

All the information contained in this lecture can be found in ‘the little green book’ [CCJGV].
The story of the Haagerup property begins with the following fundamental result of [Haa], due

to Uffe Haagerup.

Theorem 1.1. Let n ∈ N and let Fn denote the free group on n generators. The word-length
function (with respect to the standard generating set) l : Fn → C is conditionally negative definite.

Let G be a locally compact group. We will assume it is second countable (so that for example
the space C0(G), of all complex continuous functions on G vanishing at infinity, is separable).
Note that if G is compact then C0(G) = C(G).

Definition 1.2. A function ψ : G → C is said to be conditionally negative definite if for any
n ∈ N, g1, . . . , gn ∈ Γ and λ1, . . . , λn ∈ C such that

∑n
i=1 λi = 0 we have

n∑
i,j=1

λiψ(g−1
i gj)λj ≤ 0.

In these lectures we will assume that all conditionally negative definite functions are continuous
and normalised (i.e. ψ(e) = 0).

We say that a conditionally negative definite function is real if it is real-valued. In that case it
suffices to check the condition above for real scalars λ1, . . . , λn.

Definition 1.3. A function ϕ : G→ C is said to be positive definite if for any n ∈ N, g1, . . . , gn ∈ Γ
and λ1, . . . , λn ∈ C we have

n∑
i,j=1

λiϕ(g−1
i gj)λj ≥ 0.

In these lectures we will assume that all positive definite functions are continuous and normalised
(i.e. ϕ(e) = 1).

Note that ϕ ≡ 1 is positive definite and so is ϕ = δe.

Theorem 1.4 (Schönberg Correspondence). Let ψ : G→ C. The following conditions are equiv-
alent:

(i) ψ is conditionally negative definite;
(ii) for each t ≥ 0 the function g 7→ exp(−tψ(g)) is positive definite.

For the proof we refer to Appendix C of [BHV].
By Schönberg correspondence we can rephrase Haagerup’s theorem by saying that on Fn each

function γ 7→ exp(−tl(γ)), t ≥ 0, is positive definite.

Haagerup property via functions on G.

Definition 1.5. A locally compact group has the Haagerup property (HAP) if it admits a sequence
of positive definite functions (ϕn)∞n=1 which vanish at infinity and converge to 1 uniformly on
compact subsets of G.

Note that (exp(− 1
n l)
∞
n=1 is such a sequence on Fn.

Proposition 1.6. G has HAP if and only if it admits a conditionally negative definite real function
ψ which is proper (i.e. pre-images of compact sets with respect to ψ are compact).

Sketch of the proof. ⇐= Follows from the Schönberg’s correspondence.
=⇒ Notice first that one can assume that the functions ϕn given by the fact that G has HAP are

real-valued (if necessary replacing them by |ϕn|2). Then construct ψ of the form ψ =
∑∞
k=1 αk(1−

ϕnk
) (the series converges uniformly on compact subsets) for suitably chosen subsequence (nk)∞k=1

and coefficients αk ≥ 0. �
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Haagerup property via representations of G. By a representation of G we will always mean
a unitary, strongly continuous representation – in other words a homomorphism π from G to the
space U(H) (of all unitaries on some Hilbert space H) such that for each ξ ∈ H the map g 7→ π(g)ξ
is continuous. We will only consider representations on separable Hilbert spaces.

Theorem 1.7 (GNS construction for positive definite functions). If π is a representation of G
on a Hilbert space H and ξ ∈ H is a unit vector, then the function g 7→ 〈ξ, π(g)ξ〉 is positive
definite. Conversely, if ϕ : G→ C is positive definite, then there exists a (unique up to a unitary
equivalence) triple (πϕ,Hϕ, ξϕ) such that Hϕ is a Hilbert space, πϕ is a representation of G on Hϕ,
ξϕ ∈ Hϕ is a unit vector cyclic for πϕ (i.e. Lin{πϕ(g)ξϕ : g ∈ G} is dense in Hϕ) and

ϕ(g) = 〈ξϕ, πϕ(g)ξϕ〉, g ∈ G.

The representation πϕ is usually called the GNS (Gelfand-Naimark-Segal) representation asso-
ciated with ϕ. The construction is of course a special case of the GNS construction for states on
C∗-algebras (see for example [Mur]) – positive definite functions can be viewed as states on the
full group C∗-algebra C∗(G), the enveloping C∗-algebra of L1(G).

Definition 1.8. A representation π of G on H is mixing (or a C0-representation) if for each
ξ, η ∈ G the coefficient function g 7→ 〈ξ, π(g)η〉 vanishes at infinity.

The terminology originates in the dynamical systems, see for example [Gla]. It is easy to verify
that the left regular representation (of G on L2(G)) is always mixing. Moreover direct sums (even
infinite) of mixing representations are mixing and a tensor product of a mixing representation with
arbitrary representation is mixing. Finite-dimensional representations of non-compact groups are
never mixing.

Remark 1.9. Consider a positive definite function ϕ : G→ C and the associated representation
πϕ. Then ϕ vanishes at infinity if and only if πϕ is mixing. The backward implication is trivial,
the forward one uses the cyclicity of the GNS representation.

Definition 1.10. We say that a representation π of G on H contains almost invariant vectors if
there exists a sequence (ξn)∞n=1 of unit vectors in H such that

‖π(g)ξn − ξn‖
n→∞−→ 0

uniformly on compact subsets of G. This is equivalent to the fact that π weakly contains the
trivial representation and is written as 1G � π.

Definition 1.11. We say that a representation π of G on H contains an invariant vector if there
exists a unit vector ξ ∈ H such that π(g)ξ = ξ for all g ∈ G. This is equivalent to the fact that π
contains the trivial representation and written as 1G ≤ π.

Theorem 1.12. G has HAP if and only if it admits a mixing representation containing almost
invariant vectors.

Proof. ⇐= If π is a mixing representation of G with almost invariant vectors (ξn)∞n=1 then g 7→
〈ξn, π(g)ξn〉 yields the required sequence of positive definite functions.

=⇒ Consider the sequence of positive definite functions (ϕn)∞n=1 given by the fact that G
has HAP. By Remark 1.9 each πϕn

is mixing; so is thus the direct sum π :=
⊕

n∈N πϕn
. View

ξn := ξϕn
⊂ Hϕn

as unit vectors in
⊕

n∈N Hϕn
and compute:

‖π(g)ξn − ξn‖2 = 2− 〈π(g)ξn, ξn〉 − 〈ξn, π(g)ξn〉 = 2− ϕn(g)− ϕn(g)

and each of the last two factors converges to 1 uniformly on compact subsets of G. Thus (ξn)∞n=1

are almost invariant vectors for π. �

Recall that one of the equivalent characterisations of amenability says that G is amenable if
and only if the left-regular representation of G contains almost invariant vectors.

Corollary 1.13. Amenable (so for example abelian or compact) groups have HAP.
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Definition 1.14. G has the Kazhdan Property ‘T’ if any representation of G which contains
almost invariant vectors must contain an invariant vector.

Corollary 1.15. G has both HAP and Property ‘T’ if and only if G is compact.

Proof. Suppose that π is a mixing representation of G containing almost invariant vectors. If G
has Property ‘T’, then π must contain an invariant vector, say ξ0. But then the coefficient function
corresponding to ξ0 is a constant function equal to 1, so the fact it belongs to C0(G) means that
G is compact.

On the other hand if G is compact then every representation of G is mixing and contains an
invariant vector.

�

HAP via affine isometric actions.

Theorem 1.16. G has HAP if and only if admits a continuous action α on a real Hilbert space H
by affine isometries, which is proper: if B,C ⊂ H are bounded then the set {g ∈ G : α(g)(C)∩B 6=
∅} is relatively compact.

Remark 1.17. Each affine isometric action as above can be written as

α(g)ξ = π(g)ξ + b(g), ξ ∈ H, g ∈ G,
where π : G→ B(H) is an orthogonal representation and b : G→ H is a cocycle for π:

b(gg′) = b(g) + π(g)b(g′), g, g′ ∈ G.
The idea of the proof of the theorem above is as follows: on one hand, given an affine isometric

action one can show directly that the function g 7→ ‖b(g)‖2 is conditionally negative definite, and
properness of the action transforms into properness of that function. On the other, given a real
conditionally negative definite function a GNS-type construction leads to a real Hilbert space with
affine isometric action of G (see [BHV]).

Examples. Free groups and finitely generated Coxeter groups have HAP. So do SL(2;Z), SO(1, n),
SU(1, n) (but not SL(3;Z)!). For the discussion of the examples we refer to the books [CCJGV]
and [BrO].

2. Lecture 2

HAP via ‘typical’ representations. In the first lecture we showed that G has HAP if and
only if it admits a mixing representation with invariant vectors. Now we will consider the case of
‘typical’ representations, following the classical ideas of Paul Halmos ([Hal]), later developed for
example in [BeR], [KeP] or [Kec].

Fix H – an infinite dimensional separable Hilbert space and consider RepGH, the collection of
all representations of G on H. The set RepGH can be topologised via the basis of neighbourhoods
(π ∈ RepGH, K – compact subset of G, Ω – finite subset of H, ε > 0)

V (π,K,Ω, ε) = {σ ∈ RepGH : ∀g∈K∀ξ∈Ω ‖π(g)ξ − σ(g)ξ‖ < ε}.
It can be verified that the relevant topology is metrisable (recall that we assumed that G is
second-countable and H is separable) and makes RepGH a Polish space, i.e. a separable complete
metric space. It is equipped with certain natural operations: direct sums and tensoring. These are
formally defined via fixing some identifications: for example once we fix a unitary W : H⊗H→ H
we can define for ρ, π ∈ RepGH

(ρ� π)(g) = W (ρ(g)⊗ π(g))W ∗, g ∈ G.
We will soon show that G has HAP if and only if mixing representations are dense in RepGH.

Begin by formulating and proving a general lemma.

Lemma 2.1. Let R ⊂ RepGH satisfy the following conditions:

(i) invariance under unitary conjugations: for each unitary U ∈ B(H) and σ ∈ R the repre-
sentation UσU∗ belongs to R;
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(ii) tensor absorption property: for all σ ∈ R and π ∈ RepGH the representation σ � π ∈ R;
(iii) there exists σ0 ∈ R which contains almost invariant vectors.

Then R is dense in RepGH.

Proof. Let π ∈ RepGH and fix Ω = {η1, . . . , ηk} ⊂ H, K – a compact subset of G, ε > 0. Assume
that ‖ηi‖ = 1 and let (en)∞n=1 be an orthonormal basis in H. Exploiting compactness of K find
N ∈ N such that for all g ∈ K, i = 1, . . . , k

‖π(g)ηi −
N∑
n=1

〈en, π(g)ηi〉en‖ <
ε

3
.

Let then ξ ∈ H be a unit vector such that ‖σ0(g)ξ − ξ‖ < ε
3 for all g ∈ K. There exists a unitary

V : H→ H⊗ H such that

V (x) = x⊗ ξ, ξ ∈ Lin{η1, . . . , ηk, e1, . . . , eN}.

Then the representation ρ = V ∗(π ⊗ ρ0)V belongs to R (as it is unitarily equivalent to ρ0 � π)
and for g ∈ K, i = 1, . . . , k

‖V ∗(π(g)⊗ ρ0(g))V ηi − π(g)ηi‖ = ‖V ∗(π(g)ηi ⊗ ρ0(g)ξ)− π(g)ηi‖

< ‖V ∗(π(g)ηi ⊗ ξ)− π(g)ηi‖+
ε

3
< ‖V ∗

(
N∑
n=1

〈en, π(g)ηi〉en

)
⊗ ξ − π(g)ηi‖+

2ε

3

= ‖
N∑
n=1

〈en, π(g)ηi〉en − π(g)ηi‖+
2ε

3
< ε.

This ends the proof. �

Theorem 2.2 ([DFSW]). G has HAP if and only if mixing representations are dense in RepGH.

Proof. ⇐= Choose π ∈ RepGH which contains an invariant vector, say ξ0 (it suffices for example
to take the trivial representation on H). Let (ρn)∞n=1 be a sequence of mixing representations in
RepGH converging to π. Put ρ =

⊕
n∈N ρn ∈ RepGH (identifying H with H⊕∞). The representa-

tion ρ is mixing. For each n ∈ N put ξn = ξ0 ⊗ δn ∈ H⊕∞. Further for a compact set K ⊂ G and
ε > 0 there exists N0 ∈ N such that for all n ≥ N0 and g ∈ K we have ‖π(g)ξ0 − ρn(g)ξ0‖ < ε.
Thus for g ∈ K and n ≥ N0

‖ρ(g)ξn − ξn‖ = ‖ρn(g)ξ0 − ξ0‖ = ‖ρn(g)ξ0 − π(g)ξ0‖ < ε,

and ρ is a mixing representation containing almost invariant vectors. Hence G has HAP.
=⇒ It suffices to observe that if R denotes the set of mixing representations of G on H, then

the first two conditions of Lemma 2.1 are automatically satisfied; if G has HAP then the third
condition also holds. Thus Lemma 2.1 ends the proof. �

Definition 2.3. A representation of G is said to be weakly mixing if it contains no non-trivial
finite dimensional subrepresentations.

Weak mixing can be viewed as a strong version of ergodicity – a representation is said to be
ergodic if it contains no invariant vectors. As mixing representations of non-compact groups cannot
be finite dimensional, and mixing property passes to subrepresentations, mixing representations
of non-compact groups are always weakly mixing.

Theorem 2.4 ([KeP]). The following conditions are equivalent:

(i) G does not have Property ‘T’;
(ii) weakly mixing representations are dense in RepGH.

There are other characterisations of Property ‘T’ and of HAP via ‘typical’ actions of G on [0, 1]
or even on the hyperfinite II1 factor ([BeR], [Hjo], [KeP]).
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The group von Neumann algebra and Schur multipliers. Let Γ be a discrete group. Then
Γ acts on `2(Γ) via the left regular representation:

λγδγ′ = δγγ′ , γ, γ′ ∈ Γ.

The group von Neumann algebra of Γ is the von Neumann algebra generated in B(`2(Γ)) via this
action:

VN(Γ) = {λγ : γ ∈ Γ}′′ ⊂ B(`2(Γ)).

It is equipped with a faithful normal trace τ given by the formula

τ(x) = 〈δe, xδe〉, x ∈ VN(Γ);

the space L2(VN(Γ), τ) is defined as the completion of VN(Γ) with respect to the L2-norm:

‖x‖2 := τ(x∗x)
1
2 , x ∈ VN(Γ).

The definition of L2(M, τ) for arbitrary von Neumann algebra equipped with a faithful normal
trace τ is analogous. It is easy to see that C[Γ] ⊂ VN(Γ) ⊂ L2(VN(Γ), τ) and that for a finite
linear combination x =

∑
γ aγλγ there is ‖x‖22 =

∑
γ |aγ |2.

Lemma 2.5. Let ϕ : Γ → C be positive definite. Then there exists a unique unital completely
positive normal, trace preserving map Mϕ : VN(Γ) → VN(Γ), the Schur multiplier associated to
ϕ, such that

Mϕλγ = ϕ(γ)λγ , γ ∈ Γ.

Proof. Let (πϕ,Hϕ, ξϕ) be the GNS triple associated to ϕ and choose an orthonormal basis (ei)
∞
i=1

in Hϕ. Define then for each i ∈ N the function ai ∈ `∞(Γ) via

ai(γ) = 〈ξϕ, πϕ(γ)ei〉, γ ∈ Γ.

Then for each γ ∈ Γ there is∑
i∈N
|ai(γ)|2 =

∑
i∈N
〈πϕ(γ−1)ξϕ, ei〉〈ei, πϕ(γ−1)ξϕ〉 = ‖πϕ(γ−1)ξϕ‖2 = 1.

The last fact means that if we view ai as elements of B(`2(Γ)), acting by multiplication, then∑
i∈N a

∗
i ai = IB(`2(Γ)) (strong operator topology convergence) and the map T attaching to each

x ∈ B(`2(Γ)) the strongly convergent sum
∑
i∈N aixa

∗
i is a normal unital completely positive map

on B(`2(Γ)). It remains to check that for each γ, h ∈ Γ we have

(
∑
i∈N

aiλγa
∗
i )δh =

∑
i∈N

ai(γh)ai(h)δγh =
∑
i∈N
〈ξϕ, πϕ(γh)ei〉〈ei, πϕ(h−1)ξϕ〉δγh

=
∑
i∈N
〈πϕ(h−1γ−1)ξϕ, ei〉〈ei, πϕ(h−1)ξϕ〉δγh = 〈πϕ(h−1γ−1)ξϕ, πϕ(h−1)ξϕ〉δγh

= 〈ξϕ, πϕ(γ)ξϕ〉δγh = ϕ(γ)δγh = ϕ(γ)λγδh.

This proves the existence of unital completely positive map Mϕ on VN(Γ) as required in the
lemma. The facts that Mϕ is trace preserving and unique are easy to check. �

Schur multipliers can be characterised abstractly as certain maps on VN(Γ) ‘commuting’ with
the relevant coproduct. Moreover if Φ : VN(Γ)→ VN(Γ) is given by the formula Φ(λγ) = ϕ(γ)λγ ,
γ ∈ Γ, for a certain function ϕ : Γ→ C, then Φ is completely positive and unital if and only if ϕ is
positive definite. Thus completely positive Schur multipliers can be viewed as abstract incarnations
of positive definite functions. Each Mϕ as above induces a contraction Tϕ on L2(VN(Γ), τ) (as
can be seen directly or via the Kadison-Schwarz inequality).

We will need another lemma related to Schur multipliers.

Lemma 2.6. Let ϕ : Γ→ C be positive definite. Then the following conditions are equivalent:

(i) ϕ vanishes at infinity;
(ii) Tϕ is compact.
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Proof. ⇐= Suppose that ϕ does not vanish at infinity. This means that there exists ε > 0 and a
sequence {γn : n ∈ N} of elements of Γ such that for all n ∈ N there is |ϕ(γn)| > ε. This means
however that the image of the closed ball of radius ε−1 in L2(VN(Γ), τ) via Tϕ contains an infinite
orthonormal set given by {λγn : n ∈ N}, so cannot be compact.

=⇒ Assume that ϕ vanishes at infinity, choose ε > 0 and a finite set F ⊂ Γ such that |ϕ(γ)| < ε
for γ ∈ Γ\F . One can verify that the map TF defined on C[Γ] inside L2(VN(Γ), τ) via the formula:

TF (λγ) =

{
ϕ(γ)λγ γ ∈ F

0 γ /∈ F

extends to a bounded finite rank map on L2(VN(Γ), τ). Moreover for arbitrary x ∈ C[Γ], x =∑
γ∈Γ aγλγ there is

‖TFx− Tϕx‖22 = ‖
∑
γ /∈F

ϕ(γ)αγλγ‖22 =
∑
γ /∈F

|ϕ(γ)αγ |2 ≤ ε2
∑
γ /∈F

|αγ |2 ≤ ε2
∑
γ

|αγ |2 = ‖x‖22.

Hence ‖Mϕ −MF ‖ ≤ ε and Mϕ is compact.
�

HAP via the group von Neumann algebra.

Definition 2.7 ([Cho], [Jol]). Let M be a von Neumann algebra equipped with a faithful normal
trace τ . Then M has the von Neumann algebraic Haagerup property (the vNa HAP) if there
exists a sequence (Φn)∞n=1 of completely positive, unital, normal maps on M such that

(i) for all n ∈ N we have τ ◦Φn = τ , so that Φn (again due to the Kadison-Schwarz inequality)
induces a contractive map Tn on L2(M, τ);

(ii) for all n ∈ N the map Tn is compact;
(iii) for all z ∈ L2(M, τ) we have limn→∞ ‖Tn(z)− z‖2 = 0.

In [Jol] Paul Jolissaint showed that in fact the above property does not depend on the choice
of a faithful normal trace on M . Using the fact that each Tn is a contraction it suffices to check
the last condition on a linearly dense subset of L2(M, τ). The interest in the vNa HAP originates
in some work of Alain Connes, but for us the key point is the following characterisation of HAP
for discrete groups due to Marie Choda.

Theorem 2.8 ([Cho]). Let Γ be a discrete group. The following conditions are equivalent:

(i) Γ has HAP;
(ii) VN(Γ) has the vNa HAP.

Proof. ⇐= Let M : VN(Γ)→ VN(Γ) be unital and completely positive. Define

ϕ(γ) = τ(M(λγ)λγ−1), γ ∈ Γ.

Then the function ϕ is positive definite. Indeed, M(1) = 1 implies that ϕ(e) = 1 and if n ∈ N,
c1, . . . , cn ∈ C then

n∑
i,j=1

cicjϕ(γ−1
i γj) =

n∑
i,j=1

τ(cicjT (λγ−1
i γj

)λγ−1
j γi

) =

n∑
i,j=1

τ(cicjλγiM(λγ−1
i γj

)λγ−1
j

)

=

n∑
i,j=1

〈
δe, cicjλγiM(λγ−1

i γj
)λγ−1

j
δe

〉
=

n∑
i,j=1

〈
ξi,M(λγ−1

i γj
)ξj

〉
=

n∑
i,j=1

〈
ξi,M(λγi

∗λγj )ξj
〉
≥ 0,

where ξi = ciδγi−1 , i = 1, . . . , n, and we first used the tracial property of τ , then the definition of
τ and finally the assumption that M is completely positive.

Consider then a sequence (Φn)∞n=1 of the approximating maps featuring in the definition of the
vNa HAP and let (ϕn)∞n=1 be corresponding positive definite functions. Then for each γ ∈ Γ

ϕn(γ) = τ(Φn(λγ)λγ−1) = 〈λγ , Tn(λγ)〉2,
n→∞−→ 〈λγ , λγ〉2 = 1.
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Moreover for each n ∈ N
lim sup
γ→∞

|ϕn(γ)| ≤ lim sup
γ→∞

‖Tn(λγ)‖2 = 0.

The last equality follows from compactness of Tn (see a similar argument in the proof of Lemma
2.6).

=⇒ Choose a sequence of positive definite functions (ϕn)n∈N in c0(Γ) such that ϕn(γ)
n→∞−→

1 for each γ ∈ Γ. By Lemmas 2.5 and 2.6 the associated Schur multipliers Mϕn
are unital,

completely positive and normal maps on VN(Γ) and induce compact contractions Tϕnon the L2-
space. Moreover for each γ ∈ Γ we have

‖Tϕn
(λγ)− λγ‖22 = ‖(ϕn(γ)− 1)λγ‖22 = |ϕn(γ)− 1|2 n→∞−→ 0.

�

The idea of the proof of the first implication above can be viewed as ‘averaging’ the approxi-
mating maps into Schur multipliers. Recently Zhe Dong introduced in [Don] an analogue of the
vNa HAP for a C∗-algebra equipped with a faithful trace. It is easy to deduce from the above
proof that a discrete group Γ has HAP if and only if the reduced group C∗-algebra C∗r (Γ) (i.e. the
norm closure of the algebra C[Γ] inside B(`2(Γ))) has the Haagerup property in the sense of Dong
– the key property lies in the fact that Schur multipliers leave C∗r (Γ) invariant.

Corollary 2.9. If Γ1,Γ2 are discrete groups which have HAP, the free product Γ1 ? Γ2 has HAP.

Proof. This follows from the last theorem and the result of Florin Boca ([Boc]), who showed that
the free product of von Neumann algebras which have the vNa HAP has the vNa HAP. �

3. Lecture 3

This section will be presented as slides: it is based mainly on a recent preprint [DFSW].
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