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Abstract. Groups first entered mathematics in their geometric guise, as collections of all
symmetries of a given object, be it a finite set, a polygon, a metric space or a differential
manifold. Original definitions of quantum groups, also in the analytic context, had rather
algebraic character. In these lectures we describe several examples of quantum symmetry
groups of a given quantum (or classical) space. The theory is based on the concept of
actions of (compact) quantum groups on C∗-algebras and viewing symmetry groups as uni-
versal objects acting on a given structure. Initiated by Wang in 1990s, in recent years it
has been developing rapidly, exhibiting connections to combinatorics, free probability and
noncommutative geometry. In these lectures we will present both older and newer research
developments regarding quantum symmetry groups, discussing both the general theory and
specific examples.

I would like to thank here all my collaborators on articles related to quantum symmetry
groups and thus also to these lectures. Particular thanks are due to Teo Banica, but I would
also like to mention Jyotishman Bhowmick, Debashish Goswami and Piotr So ltan.

Plan of lectures

Lecture 1 Compact quantum groups and their actions: motivation behind noncommuta-
tive mathematics, definition, basic properties and first examples of compact quantum
groups; compact quantum group actions, their continuity and nondegeneracy, invari-
ant states, ergodicity.

Lecture 2 Quantum symmetry groups of finite structures: categories of quantum groups
or semigroups acting on a given C∗-algebra and preserving some additional structure,
free permutation groups, quantum symmetry groups of graphs, Wang and Van Daele’s
universal compact quantum groups.

Lecture 3 Quantum symmetry groups of C∗-algebras equipped with orthogonal filtra-
tions: quantum symmetry groups of C∗-algebras equipped with orthogonal filtrations
with the existence proof, examples related to group C∗-algebras.

Lecture 4 Further examples, connections to liberated quantum groups: projective lim-
its of quantum symmetry groups, quantum symmetry groups of Bratteli diagrams,
relation between quantum symmetry groups and liberated quantum groups.

Lecture 5 Other structures related to quantum symmetry groups and open prob-
lems: quantum homogeneous spaces inside S+

N , quantum partial permutations, open
problems.
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All algebras and vector spaces in these lectures will be over C. The algebraic tensor product
of spaces/algebras will be denoted by �, with the symbol ⊗ reserved for the tensor product
of maps and the minimal/spatial tensor product of C∗-algebras. The algebraic dual of a
(finite-dimensional) vector space V will be denoted V ′. Inner products will always be linear
in the second variable, and Σ will be the symbol reserved for the tensor flip. We will often
use the ‘leg’ notation for operators acting on tensor products: so that for example if A,B,C
are unital algebras and T ∈ L(A�C), we write T13 ∈ L(A�B�C) for an operator formally
defined as (idA ⊗Σ)(T ⊗ idB)(idA ⊗Σ). The linear span of a subset X of a vector space will
be denoted by LinX, and a closed linear span of a subset X of a normed space by LinX.

1. Compact quantum groups and their actions

In this lecture we discuss possible approaches to the concept of symmetry groups, define
compact quantum groups and discuss their actions on classical and quantum spaces.

1.1. The notion of symmetry groups. The concept of a group first appeared in mathemat-
ics, in the 19th century in the work of Abel and Galois (with some earlier developments due
to Euler, Bezout and Lagrange), as a name for a collections of symmetries of some structure:
a set of solutions of a given equation, a figure on the plane, a fixed finite set. Symmetries of
a given structure X are viewed as transformations of X preserving its relevant properties; so
for example if X is a metric space then it is natural to require that the transformations do not
change the metric, and we land with the concept of isometries of X. It was soon noted that
so understood symmetries have natural properties: they can be composed in an associative
manner, there always exists a trivial symmetry, and each symmetry transformation admits
an inverse transformation, which is also a symmetry. Thus an abstract notion of a group was
born in the late 19th century (in the finite case due to Cayley, and soon later generalised by
Weber and van Dyck) and has remained a cornerstone of mathematics ever since.

In hindsight, one can define the symmetry groups of a structure X abstractly as follows:
consider all the groups acting on X (in a manner preserving the relevant features of X).
These form a category; and the symmetry group of X, say SymX , is a universal object of this
category. Thus SymX is a group acting on X, and every action of a group G on X can be
viewed simply as a homomorphism from G to SymX . This viewpoint will be indispensable
for these lectures, where we will study analogous concepts for quantum groups. Here the
notion of individual, point transformations will be completely absent and the categorical
approach becomes the only possible way to define symmetry groups. As we will only work
with (quantum) symmetries of finite or compact structures, it will be natural to restrict
attention to compact quantum groups.

1.2. Compact quantum groups – definition and basic facts. The starting point of non-
commutative/quantum generalisations of classical mathematics is based on the fundamental
result of Gelfand and Najmark. Recall that a C∗-algebra A is a Banach ∗-algebra (i.e. a ∗-
algebra equipped with a submultiplicative norm, with respect to which it is a Banach space)
satisfying the C∗-condition:

‖x∗x‖ = ‖x‖2, x ∈ A.

Two main motivating examples of C∗-algebras are B(H), the algebra of all bounded operators
on a Hilbert space H equipped with an operator norm, and C(X), the algebra of continuous
functions on a compact space X equipped with the supremum norm.
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Theorem 1.1 (Gelfand-Najmark). Every commutative unital C∗-algebra A is (isometrically)
isomorphic to the algebra C(XA) for a unique (up to a homeomorphism) compact space XA.
Given two compact spaces X1 and X2 and a continuous map T : X1 → X2 the map αT :
C(X2)→ C(X1) given by the formula

αT (f) = f ◦ T, f ∈ C(X2),

is a unital ∗-homomorphism. Moreover every unital ∗-homomorphism between commutative
C∗-algebras arises in this way.

Note the inversion of arrows:

T : X1 −→ X2

C(X1) ←− C(X2) : αT

The compact space XA is the character space of the C∗-algebra A; this identification explains
also why the second part of the above theorem, concerning the morphisms, is true.

The above facts, inspiring most of the noncommutative mathematics, allow us to view
unital C∗-algebras as the algebras of continuous functions on ‘compact quantum spaces’ (we
will sometimes use a suggestive notation A = C(X) to stress that we think of a C∗-algebra A
as the algebra of continuous functions on the ‘virtual’ space X). In this correspondence the
role of maps between spaces is taken by unital ∗-homomorphisms between C∗-algebras. The
state space of a C∗-algebra A (i.e. the space of all positive norm 1 functionals on A) will be
denoted by S(A) – it is a noncommutative counterpart of the set of all regular probability
measures on the underlying space.

In these lectures we are interested in the study of compact groups; it turns out that it is
easier to first ‘quantise’ the notion of a compact semigroup. For that we need to understand
how the notion of multiplication transfers to the setting introduced above. A compact semi-
group S is a compact topological space together with a continuous map M : S×S → S which
is associative. The dual transformation αM : C(S)→ C(S × S) is a unital ∗-homomorphism.
It is not difficult to see, using the Stone-Weierstrass theorem, that the algebra C(S × S) is
isomorphic to the algebra C(S) ⊗ C(S), where the symbol ⊗ denotes the spatial/minimal
tensor product of C∗-algebras (for this notion and other basic facts related to C∗-algebras
which will be used without further comment we refer to [Mur]; an exhaustive treatment of
C∗-algebraic tensor products and corresponding extensions of linear maps can be found in
[BrO]). Thus we may view αM as a map taking values in C(S) ⊗ C(S); this, via another
application of the Stone-Weierstrass theorem, allows us to encode the associativity of M via
coassociativity of αM , i.e. the condition

(αM ⊗ id) ◦ αM = (id⊗ αM ) ◦ αM .

Definition 1.2. A unital C∗-algebra A is called an algebra of functions on a compact quantum
semigroup, if it is equipped with the comultiplication, i.e. a unital ∗-homomorphism ∆ : A→
A⊗ A which is coassociative:

(∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆.

The question of finding an appropriate definition of a compact quantum group is far subtler.
One could attempt to try to dualise in a similar manner the existence of the neutral element
and the inverse map, but this leads to a rather restrictive theory (the respective issues are
related to the lack of coamenability and the Kac property, which we will explain later). The
solution, found by Woronowicz, is based on the following fact.
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Proposition 1.3. Let S be a compact semigroup. If S satisfies the cancellation laws, i.e. for
each g1, g2, h ∈ S either of the equalities g1h = g2h or hg1 = hg2 implies that g1 = g2, then S
is in fact a group – the multiplication in S admits a neutral element and inverses.

Exercise 1.1. Prove the above proposition (first reduce the case to abelian, considering a
closed subsemigroup of S generated by a single element, and then consider non-empty closed
ideals in S).

The full proof of the above result, together with a very gentle introduction to the theory
of compact quantum groups may be found in the survey [MVD]. We are now ready for the
main definition of this lecture.

Definition 1.4 (Woronowicz). A unital C∗-algebra A equipped with a unital ∗-homomorphism
∆ : A→ A⊗ A which is coassociative:

(∆⊗ idA)∆ = (idA ⊗∆)∆

and satisfies the quantum cancellation rules:

Lin ∆(A)(1⊗ A) = Lin ∆(A)(A⊗ 1) = A⊗ A

is called an algebra of continuous functions on a compact quantum group.

We usually write A = C(G) and informally call G a compact quantum group. The reader
may have noticed the use of the indefinite article above: this will be explained later on.
The following result is straightforward (recall that ∗-homomorphisms between C∗-algebras
are contractions).

Proposition 1.5. Let G be a compact quantum group and let C(G) be an algebra of continuous
functions on G. Then the dual space C(G)∗ equipped with the convolution multiplication

µ ? ν := (µ⊗ ν) ◦∆, µ, ν ∈ C(G)∗

is a Banach algebra.

The notation and terminology reflect the fact that if G is a classical compact group then
C(G)∗ can be identified via Riesz theorem with the set of all regular measures on G and the
multiplication ? is the usual convolution of measures. Note that a convolution of states on
C(G) is a state.

Convolution multiplication can be defined also in the context of compact quantum semi-
groups. The next key result requires however the quantum group structure and in a sense
justifies Definition 1.4.

Theorem 1.6 ([Wo2]). Let G be a compact quantum group. Then C(G) admits a (unique)
Haar state: a state h ∈ C(G)∗ such that

(h⊗ id) ◦∆ = (id⊗ h) ◦∆ = h(·)1A;

equivalently, for any ω ∈ C(G)∗

h ? ω = ω ? h = ω(1)h.

In general the Haar state need not be faithful (see however Theorem 1.9 below).
Let n ∈ N. A unitary matrix U = (uij)

n
i,j=1 ∈ Mn(C(G)) is called a (finite-dimensional)

unitary representation of G if

∆(uij) =
n∑
k=1

uik ⊗ ukj , i, j = 1, . . . , n.
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Any linear combination of the elements uij appearing above is called a coefficient of U . Each
unitary representation as above can be identified with a unitary operator in B(HU )⊗ C(G),
where HU is an n-dimensional Hilbert space. Then the formula displayed above can be
rewritten as the following equality in B(HU )⊗ C(G)⊗ C(G):

(1.1) (id⊗∆)(U) = U12U13.

Two unitary representations U, V are said to be equivalent if there exists a unitary T ∈
B(HU ;HV ) such that U = (T ∗ ⊗ id)V (T ⊗ id); U is said to be contained in V if HU is
a subspace of HV and U = (PHU ⊗ idC(G))V (PHU ⊗ idC(G)). Finally U is irreducible if it
contains no proper (i.e. different from U) non-zero representation. We denote by Irr(G) the
set of all equivalence classes of irreducible representations of G. Note that the equality (1.1)
makes sense also for U ∈ B(HU ) ⊗ C(G), where HU is an infinite-dimensional Hilbert space,
so can be used to define representations on infinite-dimensional Hilbert spaces. The Peter-
Weyl theory for compact quantum groups shows that any irreducible representation of G
studied in this a priori more general context must in fact be finite-dimensional and moreover
any representation, finite-dimensional or not, decomposes into a direct sum of irreducible
ones. We will later also need the notion of a fundamental representation of G: it is a finite-
dimensional unitary representation of G such that its coefficients generate C(G) as a C∗-
algebra. A compact quantum group is said to be a compact matrix quantum group if it
admits a fundamental representation.

We will often choose without further comment for each β ∈ Irr(G) a representative Uβ ∈
Mnβ (Pol(G)).

The following result shows that big parts of the study of compact quantum groups can be
conducted in the purely algebraic context.

Theorem 1.7 ([Wo2]). Let G be a compact quantum group. The linear span of all coefficients
of finite dimensional unitary representations of G is a dense unital ∗-subalgebra of C(G), which
turns out to have the structure of a Hopf ∗-algebra with the coproduct inherited from C(G).

Moreover the collection {uβij : β ∈ Irr(G), i, j = 1, . . . , nβ} forms a linear basis of Pol(G). The

Haar state is faithful on Pol(G): if a ∈ Pol(G) and h(a∗a) = 0, then a = 0.

The Hopf ∗-algebra Pol(G) carries all the essential information on G. In particular one can
always associate to it a C∗-algebra viewed as an algebra of continuous functions on G. There
are at least two such canonical constructions.

Proposition 1.8. Let G be a compact quantum group. The universal C∗-algebraic completion
of Pol(G) is the completion of Pol(G) with respect to the norm given by the formula

‖x‖u := sup{‖π(x)‖ : π : Pol(G)→ B(H) is a (cyclic) unital ∗−homomorphism }, x ∈ Pol(G).

We will denote it by Cu(G) and call it the universal algebra of continuous functions on G. It
admits a natural coproduct ∆u : Cu(G) → Cu(G) ⊗ Cu(G) defined by the linear continuous
extension of the prescription

∆u(uβij) =
n∑
k=1

uβik ⊗ u
β
kj , β ∈ Irr(G), i, j = 1, . . . , nβ.

Note that already in the formulation above we used the fact that the displayed formula
indeed defines a norm on Pol(G). As Pol(G) is a Hopf∗-algebra, it in particular admits a
counit, a character ε : Pol(G)→ C such that (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = idPol(G). It is easy
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to see that the counit admits a continuous extension to a character on Cu(G) and that it still
satisfies the equality above, with ∆ replaced by its universal version.

An alternative construction leads to the reduced C∗-algebra.

Theorem 1.9. Let G be a compact quantum group and let C(G) be an algebra of continuous
functions on G. Denote by (πh, L

2(G),Ωh) the GNS representation of C(G) with respect to
the Haar state. Then the unital C∗-algebra πh(C(G)), with the coproduct ∆r determined by
the condition

∆r ◦ πh = (πh ⊗ πh) ◦∆

has the structure of an algebra of continuous functions on a compact quantum group; it is
called the reduced algebra of continuous functions on G and sometimes denoted Cr(G).

Note that the Haar state of Cr(G) is naturally given by the vector state associated to the
GNS vector Ωh. It is always faithful.

Exercise 1.2. Show that Cr(G) is isomorphic to the GNS-completion of Pol(G) with respect
to the Haar state restricted to that ∗-algebra.

The faithfulness of the Haar state on Pol(G) implies that we can always view Pol(G) as
a subalgebra of both Cu(G) and Cr(G); we will do it without further comments. Abstract
considerations imply that Cr(G) is a quotient of Cu(G); the canonical quotient map ΛG :
Cu(G)→ Cr(G) is called the reducing morphism. We say that G is coamenable if the reducing
morphism is injective (i.e. Cu(G) and Cr(G) are canonically isomorphic). An obvious class
of examples of coamenable compact quantum groups is given by finite quantum groups, i.e.
those G for which C(G) is finite-dimensional.

Finally note that the Hopf ∗-algebras arising as Pol(G) for a compact quantum group G have
an abstract characterisation as CQG-algebras, i.e. Hopf∗-algebras spanned by their unitary
corepresentations ([DiK]). In these lectures we will sometimes ignore the distinction between
different possible completions of Pol(G); on some occasions however it plays an important
role and we will then use the notations Cr(G) and Cu(G).

1.3. First examples of compact quantum groups.

Example 1.10. Let G be a compact group. The algebra C(G) equipped with the coproduct
∆ : C(G)→ C(G)⊗ C(G) ≈ C(G×G) given by

∆(f)(s, t) = f(s · t), s, t ∈ G.
Then Pol(G) is the algebra spanned by the coefficients of finite-dimensional unitary represen-
tations of G, and the Haar state is the usual Haar integral on G. Classical compact groups
are automatically coamenable.

Example 1.11. Let Γ be a discrete group. Then C[Γ], the group ring of Γ, equipped with
the coproduct given by the linear extension of

∆(γ) = γ ⊗ γ, γ ∈ Γ,

is a CQG-algebra. The corresponding compact quantum group is denoted by Γ̂ and should
be viewed as a ‘Pontriagin’ dual of Γ 1. We further have Cr(Γ̂) = C∗r(Γ), the reduced group

1In fact the world of topological quantum groups admits a perfect generalization of the idea of Pontriagin
duality of locally compact abelian groups – to formulate it one however needs to pass to the framework of
locally compact quantum groups of Kustermans and Vaes, [KuV].
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C∗-algebra of Γ, and Cu(Γ̂) = C∗u(Γ), the universal group C∗-algebra of Γ. The Haar state on
each of these algebras arises as a (linear, continuous) extension of the formula (γ ∈ Γ, and e
denotes the neutral element of Γ).

(1.2) h(γ) =

{
1 γ = e

0 γ 6= e
.

The compact quantum group Γ̂ is coamenable if and only if Γ is amenable – which of course
motivates the terminology.

Exercise 1.3. Describe irreducible representations of Γ̂.

The last two classes of examples are in a sense of a classical nature, although the second
one exhibits many of the noncommutative features of the general theory. In particular in each
case the relevant quantum group is of Kac type, that is the Haar state is tracial. This is no
longer the case in the following example, Woronowicz’s quantum version of SU(2) ([Wo1]).

Example 1.12. Let q ∈ [−1, 0)∪ (0, 1). Consider the universal unital C∗-algebra C(SUq(2))
generated by two elements α, γ satisfying the following relations:

(1.3) α∗α+ γ∗γ = 1, αα∗ + q2γ∗γ = 1

(1.4) γ∗γ = γγ∗, αγ = qγα, αγ∗ = qγ∗α.

The formulas
∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ

determine uniquely the coproduct ∆ : C(SUq(2))→ C(SUq(2))⊗C(SUq(2)) and Woronowicz
showed in [Wo1] that this gives C(SUq(2)) the structure of an algebra of continuous functions
on a compact quantum group, called SUq(2). Further SUq(2) is coamenable (for a more
general version of this result see [Ba1] or the Appendix of [FST]), not of Kac type, and
Pol(SUq(2)) is the universal unital ∗-algebra generated by elements satisfying the relations
(1.3)-(1.4).

It turns out that similar deformations exist for all compact semisimple connected Lie groups
(see [KoS]).

Exercise 1.4. Prove that if we put q = 1 then the construction above leads to the C∗-algebra
C(SU(2)), where SU(2) is the group of 2 by 2 unitary matrices of determinant 1 and verify
that the algebraic coproduct introduced above coincides with the one arising via Example
1.10.

We will see many more examples of compact quantum groups in the following lectures.
Verifying that a given compact quantum semigroup is in fact a compact quantum group is
often non-trivial, and the following result of Woronowicz is a crucial tool (in particular it
offers the quickest way to show that SUq(2) is a compact quantum group).

Theorem 1.13 ([Wo1]). Suppose that A is a unital C∗-algebra equipped with a coassociative
coproduct ∆ : A → A ⊗ A. Let n ∈ N and let U = (uij)

n
i,j=1 ∈ Mn(A) be a unitary matrix

satisfying the following conditions:

(i) ∆(uij) =
∑n

k=1 uik ⊗ ukj , i, j = 1, . . . , n;
(ii) the ∗-algebra A generated by the set {uij : i, j = 1, . . . , n} is dense in A;

(iii) there exists a linear antimultiplicative map S : A → A such that S ◦∗ ◦S◦∗ = idA and
S(uij) = u∗ji for all i, j = 1, . . . n.
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Then A = C(G) for a certain compact matrix quantum group G and U is a fundamental
representation of G.

1.4. Morphisms between compact quantum groups.

Definition 1.14. Let G1, G2 be two compact quantum groups. By a morphism from G1 to
G2 is understood a unital ∗-homomorphism γ : Cu(G2)→ Cu(G1) such that

∆1 ◦ γ = (γ ⊗ γ) ◦∆2,

where ∆1, ∆2 denote the respective (universal) coproducts.

Note the usual inversion of arrows. There is a one-to-one correspondence between mor-
phisms from G1 to G2 and Hopf∗-algebra morphisms from Pol(G2) to Pol(G1), given by the
natural restriction/continuous-extension procedure. Note that it is not the case that all such
morphisms lead to maps between reduced C∗-algebras; in particular the counit of Pol(G),
which can be viewed as a morphism from the trivial group {e} to G, extends continuously to
Cr(G) if and only if G is coamenable ([BMT]).

Definition 1.15. Let G1, G2 be two compact quantum groups. We say that G1 is a quantum
subgroup of G2 if there exists a morphism from G1 to G2 such that its associated unital ∗-
homomorphism γ : Cu(G2)→ Cu(G1) is surjective.

Note that the above condition is easily seen to be equivalent to the surjectivity of the
restriction map γ : Pol(G2)→ Pol(G1).

The following result was shown in [Wan1] (see also [BhGS]). For the description of inductive
limits of C∗-algebras we refer to [Bla] and [Mur].

Lemma 1.16. Suppose that (Gn)∞n=1 is a sequence of compact quantum groups, that for each
n,m ∈ N, n < m there exists a compact quantum group morphism from Gm to Gn (given by
a unital ∗-homomorphism πn,m : Cu(Gn)→ Cu(Gn) and the compatibility conditions

πk,m ◦ πn,k = πn,m, n < k < m,

hold. Then the inductive limit of the sequence
(
Cu(Gn)

)∞
n=1

of C∗-algebras admits a canonical
structure of the algebra of continuous functions on a compact quantum group. Denote the
resulting compact quantum group by G∞ and let for each n ∈ N the associated morphism
from G∞ to Gn be denoted by πn,∞. Then G∞ has the following universal property: for
any compact quantum group H such that there exists a family of (compatible in a natural
sense) morphisms from H to Gn, given by maps γn : Cu(Gn) → Cu(H) there exists a unique
morphism from H to G∞ (described by a map γ : Cu(G∞)→ Cu(H)) such that γ ◦πn,∞ = γn.
We will sometimes write

G∞ = lim←−Gn.

1.5. Actions of compact quantum groups. Classically a (left, continuous) action of a
compact group G on a compact space X is a continuous map α : X ×G → X such that for
each g ∈ G the associated map αg : X → X (αg(x) := α(x, g), x ∈ X) is a homeomorphism
of X and the mapping G→ Homeo(X), g 7→ αg, is a homomorphism. In the quantum world
we as usual invert the arrows.

Definition 1.17. Let G be a compact quantum group and let B be a unital C∗-algebra. We
say that a compact quantum group G acts on B if there exists a unital ∗-homomorphism
α : B→ B⊗ C(G), called the (left, continuous) action of G on B, such that
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(i) (α⊗ idC(G))α = (idB ⊗∆)α;

(ii) Linα(B)(1⊗ C(G)) = B⊗ C(G).

The first condition displayed above is often called the action equation and corresponds
classically to the fact that the map g 7→ αg is a homomorphism. The second condition is
known as Podleś/nondegeneracy condition, and corresponds to the requirement that each
αg is a homeomorphism of X. It first appeared in the PhD thesis of Podleś ([Po1], see
also [Po2]). If we use the suggestive notion B = C(X), then we could also informally write
α : C(X) → C(X × G). To sustain this analogy, if B is commutative, so isomorphic to C(X)
for some compact space X, we often speak simply of an action of G on X.

Podleś, and independently Boca (see respectively [Po2] and [Boc]) showed that actions of
compact quantum groups have always purely algebraic ‘cores’, in the sense described by the
following theorem.

Theorem 1.18. Let G be a compact quantum group acting on a unital C∗-algebra B via a
unital ∗-homomorphism α : B → B ⊗ C(G). Define for each β ∈ IrrG a continuous linear
functional φβ : C(G)→ C determined by the conditions

φβ(uβ
′

i,j) = δβ,β′δi,j , β′ ∈ IrrG, i, j = 1, . . . , nβ′

and define Eβ : B→ B as Eβ := (idB ⊗ φβ) ◦ α. Then the following conditions hold:

(i) the space B :=
⊕

β∈IrrGEβ(B) (the algebraic direct sum) is a dense unital ∗-subalgebra
of B;

(ii) the restriction α|B takes values in B � Pol(G) and is a coaction of the Hopf ∗-algebra
Pol(G) on the ∗-algebra B.

Again, the existence of B, sometimes called the Podleś algebra, allows us to construct
reduced/universal versions of the action ([Li]). For more information on this we refer to [So4].
In particular it is proved in that paper that the Podleś algebra in many cases coincides with
the space {b ∈ B : α(b) ∈ B� Pol(G)}.

For an action as above and β ∈ IrrG we can define the following subspace of Pol(G):
Wβ = {(f ⊗ id)α(v) : f ∈ B∗, v ∈ Eβ(B)}. The algebra generated by all Wβ inside Pol(G) is a
Hopf ∗-algebra, which we will denote Rα(G). If Rα(G) is dense in C(G) (equivalently, Rα(G)
is equal to Pol(G), see [DiK]), we say that the action α of G on B is faithful.

It turns out that in the construction of quantum symmetry groups a crucial role is played
by the quantum version of an invariant measure.

Definition 1.19. Let G be a compact quantum group acting on a unital C∗-algebra B via
a unital ∗-homomorphism α : B → B ⊗ C(G). We say that the action α preserves a state
ω ∈ S(B) if

(ω ⊗ idC(G)) ◦ α = ω(·)1C(G).

Exercise 1.5. Verify that the coproduct defines an action of G on C(G), preserving the Haar
state. Interpret this action in the case where G is a classical compact group.

An action α of G on B is said to be ergodic if the fixed point algebra of α,

Fixα := {b ∈ B : α(b) = b⊗ 1C(G)},
is one-dimensional (i.e. equal to C1B). Note that the fixed point algebra is the image of the
conditional expectation (i.e. a completely positive norm one projection) (idB ⊗ h) ◦ α, where
h denotes the Haar state of G.
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Exercise 1.6. Verify the last statement.

We finish this lecture by the following proposition due to So ltan.

Proposition 1.20. Let B be a finite-dimensional C∗-algebra. Every action of a compact
quantum group on B preserves some faithful state on B.

2. Quantum symmetry groups of finite structures

The second lecture introduces the categorical approach to quantum group actions on a given
finite-dimensional C∗-algebra, defines free permutation groups, quantum symmetry groups of
finite graphs and universal quantum groups of Wang and Van Daele.

2.1. Category of compact quantum groups acting on a given structure. Consider
a unital C∗-algebra B. We want to consider the category of compact quantum group actions
on B, which we will denote by CB. The objects in CB are pairs (G, α), where G is a compact
quantum group and α is an action of G on B. A morphism in CB from (G1, α1) to (G2, α2) is
a morphism from G1 to G2 intertwining the respective actions, i.e. a unital ∗-homomorphism
γ : Cu(G2)→ Cu(G1) such that

α1 = (id⊗ γ) ◦ α2.

A careful reader will have noticed that the displayed formula above formally speaking mixes
the universal and reduced context; indeed, formally speaking we should understand the equal-
ity only as valid on respective Podleś algebras (the distinction will not be a problem in this
lecture, as we will consider only finite-dimensional B, we will however come back to it later
on). We say that (Gu, αu) is a (universal) final object in CB if for any object (G′, α′) in
CB there exists a unique morphism γ from (G′, α′) to (Gu, αu). If it exists, we will call Gu

the quantum symmetry group of B and denote by QSYMB. The usual abstract categorical
nonsense guarantees that if the quantum symmetry group of B exists, it is unique up to an
isomorphism.

If we in addition consider a state ω on B, we can define in an obvious way the category CB,ω
of all compact quantum group actions on B preserving the state ω. It is a full subcategory of
CB; in case it admits a final object we will call the underlying compact quantum group the
quantum symmetry group of (B, ω) and denote it by QSYMB,ω.

Exercise 2.1. Fix B and ω as above and suppose that CB admits a final object. Show that
if a compact quantum group G admits a faithful action on B preserving the state ω, then it
is a quantum subgroup of QSYMB,ω.

In the rest of this lecture we will discuss some cases in which the quantum symmetry groups
exist and some where they do not.

2.2. Wang’s free permutation groups. The history of quantum symmetry groups starts
in a sense with the fundamental paper [Wan2], where Wang established the existence of the
quantum (or free) permutation groups. Before we formulate the existence result we need to
introduce the desired quantum group. The following result is Theorem 3.1 a of [Wan2]; its
proof is based on Theorem 1.13.

Proposition 2.1. Let n ∈ N and consider the universal unital C∗-algebra As(n) generated by
a family (pij : i, j = 1, . . . , n) of the orthogonal projections such that for each i = 1, . . . , n

(2.1)

n∑
j=1

pij =

n∑
j=1

pji = 1.

10



The algebra As(n), together with the coproduct ∆ : As(n)→ As(n)⊗ As(n) determined by the
formula

∆(pij) =
n∑
k=1

pik ⊗ pkj , i, j = 1, . . . , n.

is the (universal) algebra of continuous functions on a compact quantum group of Kac type,
denoted S+

n and called the free permutation group on n-elements.

Note that the matrix (pij)
n
i,j=1 ∈Mn(As(n)) is a magic unitary, i.e. a unitary matrix whose

entries are orthogonal projections, and moreover it is a fundamental representation of S+
n . It

is easy to verify, using the universal properties, that S+
n acts on Cn via the map

(2.2) α(δi) =

n∑
j=1

δj ⊗ pji, i = 1, . . . , n.

Exercise 2.2. Prove that As(n) is commutative for n = 1, 2, 3 and noncommutative as soon
as n ≥ 4. Show that the classical group Sn is a quantum subgroup of S+

n .

We are ready for the main result of this subsection.

Theorem 2.2. Fix n ∈ N and consider the category of all compact quantum groups acting
on an n-element set, i.e. the category CB for B = Cn. The category CB admits a final object;
the quantum symmetry group of Cn is the free permutation group.

Proof. Let G be a compact quantum group and let α′ : Cn → Cn ⊗ C(G) be an action of G
on the algebra Cn, say given by the formulas

α′(δi) =
n∑
j=1

δj ⊗ xji, i = 1, . . . , n.

Simple computations using the fact that each of the elements δi ∈ Cn is an orthogonal
projection and that

∑n
i=1 δi = 1 show that each of the elements xji ∈ C(G) is an orthogonal

projection and that we have for each i = 1, . . . n the equality
∑n

i=1 xji = 1. To show the
existence of a unital ∗-homomorphism from As(n) to C(G) we need to show that the matrix
(xij)

n
i,j=1 is a magic unitary, i.e. establish the other equality featuring in (2.1). To that end

it suffices to show that α must preserve the counting measure of Cn. By Proposition 1.20
there exists a faithful state ρ on Cn which is preserved by α. This means that there exists a
sequence (ci)

n
i=1 of strictly positive numbers summing to 1 such that for each j ∈ {1, . . . , n}

we have
∑n

j=1 cjxji = ci1. Relabelling the elements if necessary we can assume that there

exists k ∈ {1, . . . , n} such that c1 = · · · = ck and if l ∈ {k + 1, . . . , n} then cl > c1. If k = n
then we are done, as then ρ corresponds to the normalised counting measure. Consider then
the case when k < n. As each xij is a projection, the equality

c11 =
n∑
j=1

cjxj1

implies that xl1 = 0 if l > k. Similarly xli = 0 for each i ≤ k, l > k. This means also that

1 =

k∑
j=1

xji, i ≤ k.

11



But then
k∑
j=1

n∑
i=1

xji = k1 =
k∑
i=1

k∑
j=1

xji,

and as we are dealing with the sums of positive operators we must actually have xli = 0 for
i > k, l ≤ k. This means that the matrix (xji)

n
i,j=1 is in fact a block-diagonal matrix which

has a magic unitary as a top-left k × k block. An obvious finite induction (working in the
next step with ck+1 = · · · = ck+l < ck+l+1) shows that the whole matrix is a magic unitary
and thus the action preserves the counting measure.

Thus the universal property of As(n) provides the existence of a unique unital ∗-homo-
morphism γ : As(n) → C(G) such that γ(pij) = xij for all i, j = 1, . . . , n. It is easy to see
that it intertwines the respective actions (see (2.2)) and thus defines a unique morphism from
(G, α′) to (S+

n , α). �

We established in the above proof that S+
n is also the quantum symmetry group of the pair

(Cn, ω), where ω is the counting measure. In fact Wang showed in [Wan2] only the latter
result – the proof given here comes from a recent article [BhSS]. For more information on
quantum permutation groups we refer to the survey [BBC1].

The terminology ‘free permutation group’ originates from its many relations to the free
probability and also to the fact that the algebra As(n) carries many features similar to that of
the group C∗-algebra of the free group. A quantum permutation group is a compact quantum
group which is a quantum subgroup of S+

n for some n ∈ N. For many years it remained an
open problem whether the quantum version of the Cayley’s theorem holds, i.e. whether every
finite quantum group is a quantum subgroup of a quantum permutation group. Recently it
was solved in the negative in [BBN].

2.3. Wang’s quantum automorphism groups of matrix algebras. The next simplest
class of examples of C∗-algebras, after the algebras Cn studied in the last subsection, are
given by matrix algebras Mn. Here however the situation is more complicated, as already
Wang noticed the following fact (see Theorem 6.1 (2) of [Wan2]).

Proposition 2.3. Let n ≥ 2 and let B = Mn. Then the category CB does not admit a final
object.

The reason behind the last fact informally can be explained by stating that the universal
quantum family of automorphisms of Mn is only a compact quantum semigroup. Indeed,
the category of compact quantum semigroup actions on Mn admits a final object. For more
information on these topics and explanation of the concept of quantum families we refer to
[So1] and [So2].

It is however also possible to formulate a positive result in this context (again proved via
an application of Theorem 1.13).

Theorem 2.4 ([Wan2]). Let B be a finite-dimensional C∗-algebra and let ω ∈ B∗ be a faithful
state. Then the category CB,ω admits a final object.

The quantum symmetry group of (Mn, ω) is usually denoted by QAUT(Mn, ω). Its universal
C∗-algebra may be described explicitly via generators and relations. In particular So ltan
showed in [So3] that QAUT(M2, ωq), where ωq is the state on M2 given by the density matrix
with eigenvalues 1/(1 + q2) and q2/(1 + q2), is isomorphic to SOq(3).
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2.4. Quantum symmetry groups of finite graphs. After the existence of the universal
compact quantum group acting on a finite set was established, it became natural to look for
its quantum subgroups corresponding to quantum symmetry groups of finite sets equipped
with some additional structure. The following concept was introduced by Bichon in [Bic] and
later studied by Banica and Bichon (see [BB1] and references therein).

Definition 2.5. Let G be a finite, non-directed graph (without multiple edges) with an
associated adjacency matrix D ∈ M|G|({0, 1}). An action of a quantum group G on G is an

action α of G on the algebra C|G| such that the associated magic unitary matrix U := (uij)
|G|
i,j=1,

defined as usual by the formula

α(δi) =
n∑
j=1

δj ⊗ uji, i = 1, . . . , |G|,

commutes with D:
DU = UD.

Exercise 2.3. Show that if G is a classical compact group and α is an action of G on the
set G, then the commutativity relation in the above definition corresponds to the fact that α
preserves the graph structure.

With the above definition in hand it is easy to define the quantum symmetry group of
a finite graph G, denoted QSYM(G), and prove its existence. We leave the details, similar
to these presented in the last two sections, to the reader. The key combinatorial/algebraic
question related to the concept of the quantum symmetry group of a finite graph is the
following.

Question 2.6. When does a finite graph G admit quantum symmetries? In other words,
when is the algebra C(QSYM(G)) commutative?

Banica and Bichon answered this question and computed explicitly the quantum symmetry
groups for many small graphs. We refer to [BB1] for the list of results, and here note only
that for example cyclic graphs admit no quantum symmetries.

The concept of the quantum symmetry group of a finite graph can be extended to the
quantum symmetry group of a finite metric space ([Ba2]), simply by replacing the adjacency
matrix in Definition 2.5 by the corresponding metric matrix. This can be also viewed as look-
ing for a quantum symmetry group of a finite coloured graph (different distances correspond
to different colours of edges).

2.5. Universal quantum groups of Wang and Van Daele. In the following lecture we
will need one more construction due to Van Daele and Wang ([VDW]). The following result
is Theorem 1.3 of their paper, recast in the language we are using in this course. Given a
matrix V = (vij)

n
i,j=1 with entries in a C∗-algebra we define new matrices V̄ = (v∗ij)

n
i,j=1 and

V t = (vji)
n
i,j=1 (recall that V ∗ = (v∗ji)

n
i,j=1).

Theorem 2.7. Let n ∈ N and let Q ∈ Mn(C) be an invertible matrix. Denote by Au(Q) the
universal C∗-algebra generated by the elements {uij : i, j = 1, . . . , n} such that

(i) the matrix U := (uij)
n
i,j=1 ∈Mn(Au(Q)) is unitary;

(ii) the matrix U satisfies the following commutation relations:

U tQŪQ−1 = In = QŪQ−1U t.
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There exists a compact quantum group U+
n (Q) such that Cu(U+

n (Q)) ≈ Au(Q) and the matrix
U above is a fundamental unitary representation of U+

n (Q).

In the case where Q = In we denote U+
n (Q) simply by U+

n and call it the free unitary
group. Van Daele and Wang observe that the quantum groups defined via Theorem 2.7 have
the following universal property: whenever G is a compact matrix quantum group, it is a
quantum subgroup of some U+

n (Q).
The construction above has also a ‘self-adjoint’ version.

Theorem 2.8. Let n ∈ N and let Q ∈ Mn(C) be an invertible matrix. Denote by Ao(Q) the
universal C∗-algebra generated by the self-adjoint elements {uij : i, j = 1, . . . , n} such that

(i) the matrix U := (uij)
n
i,j=1 ∈Mn(Au(Q)) is unitary;

(ii) the matrix U satisfies the following commutation relations:

U tQŪQ−1 = In = QŪQ−1U t.

There exists a compact quantum group O+
n (Q) such that Cu(O+

n (Q)) ≈ Ao(Q) and the matrix
U above is a fundamental unitary representation of O+

n (Q).

In the case where Q = In we denote O+
n (Q) simply by O+

n and call it the free orthogonal
group. Both Theorem 2.7 and Theorem 2.8 follow from Theorem 1.13. Compact quantum
groups O+

n and U+
n are of Kac type, for more information on the structure and dependence

of the quantum groups on the matrix Q we refer to [Wan3]

Exercise 2.4. Prove that the quantum groups O+
2 and SU−1(2) are isomorphic.

2.6. Dual free product of compact quantum groups. The following definition/theorem
is due to Wang. Note however that the original paper uses a different terminology.

Theorem 2.9 ([Wan1]). Let {Gi : i ∈ I} be a family of compact quantum groups. Then
the C∗-algebraic (universal) free product ?i∈I C(Gi) has a natural structure of an algebra of
continuous functions on a compact quantum group, to be denoted ?̂i∈I Gi.

The construction is dual to the usual free product of discrete groups: when the quantum

groups in question are duals of classical discrete groups, G1 = Γ̂1, G2 = Γ̂2, then G1?̂G2 ≈
Γ̂1 ? Γ2. For the construction of the coproduct we refer to Wang’s paper, but here note that
it is easy to describe for compact matrix quantum groups: if U1 ∈ Mn(C(G1)) and U2 ∈

Mm(C(G2)) are respective fundamental representations, then

[
U1 0
0 U2

]
∈ Mn+m(C(G1) ?

C(G2)) is the fundamental representation of G1?̂G2.

Exercise 2.5. Show that if n,m ∈ N then S+
n ?̂S

+
m is a quantum subgroup of S+

n+m.

3. Quantum isometry groups of C∗-algebras equipped with orthogonal
filtrations

In this lecture we will describe a construction of a quantum symmetry group of an infinite
(but possessing certain ‘compactness’ aspects) structure. It comes from the article [BS3] and
was motivated on one hand by a definition of the quantum isometry group of a noncommu-
tative compact manifold à la Connes, thus generalizing the classical notion of the isometry
group of a compact Riemannian manifold, due to Goswami ([Gos]) and on the other by a
specific example of the Goswami’s approach appearing in the context of finitely generated
discrete groups. The latter will be described in more detail in the second part of the lecture.
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3.1. Quantum actions preserving orthogonal filtrations.

Definition 3.1. Let B be a unital C∗–algebra equipped with a faithful state ω and with a
family (Vi)i∈I of finite-dimensional subspaces of B (with the index set I containing a distin-
guished element 0) satisfying the following conditions:

(i) V0 = C1B;
(ii) for all i, j ∈ I, i 6= j, a ∈ Vi and b ∈ Vj we have ω(a∗b) = 0;

(iii) the set Lin(
⋃
i∈I Vi) is a dense ∗-subalgebra of B.

If the above conditions are satisfied we say that the pair (ω, (Vi)i∈I) defines an orthogonal
filtration of B; sometimes abusing the notation we will omit ω and simply say that (B, (Vi)i∈I)
is a C∗-algebra with an orthogonal filtration. The (dense) ∗-subalgebra spanned in B by
{Vi : i ∈ I} will be denoted by B.

Note that the existence of an orthogonal filtration does not imply that the C∗-algebra A
is AF (i.e. approximately finite-dimensional, see [Mur]), although unital separable AF C∗-
algebras admit orthogonal filtrations, as we will see below. Other examples of importance for
us are the reduced group C∗-algebras. In most examples we have in fact Vi = V ∗i and ω is
a trace. Note that B can be viewed as the completion of B in the GNS representation with
respect to ω.

Definition 3.2. Let (B, ω, (Vi)i∈I) be a C∗-algebra with an orthogonal filtration. We say
that a quantum group G acts on B in a filtration preserving way if there exists an action α
of G on B such that the following condition holds:

α(Vi) ⊂ Vi � C(G), i ∈ I.
We will then write (α,G) ∈ CB,V .

Before we continue, we make one important observation. Let (α,G) ∈ CB,V . It is not
difficult to check that in fact for each i ∈ I we have

α(Vi) ⊂ Vi � Pol(G).

It is also easy to see that if (α,G) ∈ CB,V , then α preserves the state ω:

(3.1) (ω ⊗ idC(G)) ◦ α = ω(·)1C(G).

Indeed, the conditions (i) and (iii) in Definition 3.1 imply immediately that ω(a) = 0 for all
a ∈ Lin (∪i∈I\{0}Vi). Hence the equality (3.1) holds on the dense subalgebra B; as both sides
of (3.1) are continuous, it must in fact hold everywhere.

As before, the morphisms in the category CB,V are compact quantum group morphisms
which intertwine the respective actions. Let us now be very precise: this means that if
(G1, α1), (G2, α2) ∈ CB,V then a morphism from (G1, α1) to (G2, α2) is a unital ∗-homomorphism
γ : Cu(G2)→ Cu(G1) such that

(idA ⊗ γ|Pol(G2)) ◦ α2|B = α1|B.

Definition 3.3. We say that (αu,Gu) is a final object in CB,V if for any (α,G) ∈ CB,V there
exists a unique morphism γ from (α,G) to (αu,Gu).

To prove the existence result we need to complete the purely algebraic description of CB,V .

Definition 3.4. We say that a compact quantum group G admits an algebraic action α0 on
B (the dense unital ∗-subalgebra of B), preserving the filtration V if α0 : B → B � Pol(G) is
a unital ∗-homomorphism such that
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(i) α0(B)(1� Pol(G))) = B � Pol(G);
(ii) (α0 ⊗ idPol(G)))α0 = (idB ⊗∆)α0;

(iii) α0(Vi) ⊂ Vi � Pol(G), i ∈ I.
We then write (α0,G) ∈ CalgB,V . The morphisms in CalgB,V are defined analogously to those in

CB,V , with all maps acting between the algebraic objects (so that γ : Pol(G2) → Pol(G1),
etc.).

Lemma 3.5. The categories CB,V and CalgB,V are isomorphic.

Proof. The discussion before the definition implies that if (α,G) ∈ CB,V , then (α0 := α|B,G) ∈
CalgB,V . On the other hand Lemma 3.1 of [Cur] implies that if (α0,G) ∈ CalgB,V , then, as the action

α0 preserves the (faithful) state ω|B, and the corresponding GNS completion of B is isomorphic
to B, α0 extends to an action α : B → B ⊗ Cr(G) (recall that Cr(G) denotes the ‘reduced
version’ of C(G)). It is then easy to check that (α,G) ∈ CB,V .

Given a morphism γ in CB,V between (α1,G1) and (α2,G2), we know that as it is a compact
quantum group morphism, it restricts to a ∗-homomorphism between respective dense Hopf
∗-algebras. On the other hand an ‘algebraic’ compact quantum group morphism acting on the
level of Hopf ∗-algebras extends uniquely to a unital ∗-homomorphism acting between their
universal completions and preserving the respective coproducts. The facts that respective
restrictions/extensions intertwine the respective actions follow directly from the definitions.

�

In the next subsection we will often use for a given action the algebra Rα(G) defined
in Lecture 1. Note that if (α,G) ∈ CB,V then Rα(G) is the algebra generated by spaces
{(f ⊗ id)α(v) : v ∈ Vi, f ∈ V ′i }, i ∈ I, and the same description works with α replaced by α0.

3.2. Main existence result. In this subsection we present the main existence result for the
quantum symmetry group of an orthogonal filtration and sketch its proof. Full details can be
found in [BS3].

Theorem 3.6. Let (B, ω, (Vi)i∈I) be a C∗-algebra with an orthogonal filtration. The category
CB,V admits a final object; in other words there exists a universal compact quantum group
Gu acting on B in a filtration preserving way. We call Gu the quantum symmetry group of
(B, ω, (Vi)i∈I). The canonical action of Gu on B is faithful.

Proof. Observe first that by Lemma 3.5 it suffices to show that the category CalgB,V has a final

object. Let us divide the proof into several steps.

I
Fix for each i ∈ I an orthonormal basis {e1, . . . , eki} in Vi with respect to the scalar product

given by the state ω (i.e. ω(e∗l em) = δlm1, l,m = 1, . . . , ki) and let {f1, . . . , fki} in V ∗i be an

orthonormal basis for V ∗i . Consider the family (e∗l )
ki
l=1 of elements of V ∗i . This family is

linearly independent, so there exists an invertible matrix S(i) ∈Mki such that

(3.2) e∗l =

ki∑
m=1

S
(i)
lmfm l = 1, . . . , ki.

Put Qi = S(i)(S(i))T ∈ GLki(C) and let DV = ?i∈IAu(Qi), where for each i ∈ I the algebra

Au(Qi) is considered with the canonical generating set {U (i)
lm : l,m = 1, . . . , ki} (see Definition
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2.7). Define the algebra DV to be the universal algebra of continuous functions on the com-
pact quantum group ?̂i∈Iz, U

+(Qi) (now see Definition 2.9); the corresponding algebraic free
product Pol(?̂i∈Iz, U

+(Qi)) will be denoted by DV .

II
In the second step we show that if α0 is an algebraic action of a quantum group H on B

and (α0,H) ∈ CalgB,V , then the restriction of α0 to a map on Vi determines in a natural way

a representation of H. We also prove that this representation is automatically unitary and
construct a ∗-homomorphism from DV to Rα0(H).

Let (α0,H) ∈ CalgB,V . Fix i ∈ I (and skip it from most of the notation in the next para-

graph). Condition (iii) in Definition 3.4 implies that there exists a matrix U = (ulm)kl,m=1 ∈
Mk(Pol(H)) such that

(3.3) α0(em) =
k∑
l=1

el ⊗ ulm, m = 1, . . . , k.

Due to the condition (3.1) U is an isometry; indeed,

δlm1Cr(H) = ω(e∗l em)1Cr(H) = (ω ⊗ 1Cr(H))(α0(el)
∗α0(em))

= (ω ⊗ 1Cr(H))
(
(

k∑
p=1

e∗p ⊗ u∗pl)(
k∑
p=1

eq ⊗ uqm)
)

=

k∑
p,q=1

ω(e∗peq)u
∗
pluqm

=
k∑
p=1

u∗plupm = (U∗U)lm.

To show that U is actually a unitary, we need to employ the Podleś condition for the action (it
is easier here to use Lemma 3.5 and pass to the ‘analytic’ version of α0, to be denoted by α; we
can also assume that we are dealing with the ‘reduced’ action α : B→ B⊗ Cr(H)). Suppose
that U is not unitary. Viewing U as an operator on the Hilbert moduleM := Ck⊗Cr(H), we
see that (by Theorem 3.5 in [Lan]) there must exist some element in M which is not in the
range of U ; in fact its distance from the range of U must be strictly greater than some ε > 0.
In other words there is a sequence b1, . . . , bk of elements in Cr(H) such that for all possible
sequences c1, . . . , ck of elements in Cr(H) we have

bl 6=
k∑

m=1

ulmcm, for some l ∈ {1, . . . ,m}.

Consider now an element b =
∑k

l=1 el ⊗ bl ∈ Vi � Cr(H) ⊂ B ⊗ Cr(H). The last displayed
formula means precisely that b /∈ α(Vi)(1 ⊗ Cr(H)). Moreover, the remark on the Hilbert
module distance means that if d ∈ α(Vi)(1⊗ Cr(H)) then

‖(ω ⊗ idCr(H))((b− d)∗(b− d))‖ > ε2.

Consider then any c ∈ Lin
{⋃

j∈I Vj

}
, say c =

∑
j∈F cj , where F is a finite subset of I, and

any family (bj)j∈F of elements of Cr(H). Put d :=
∑

j∈F α(cj)(1 ⊗ bj), di = α(ci)(1 ⊗ bi).
Then

‖b− d‖2 ≥ ‖(ω ⊗ idCr(H))((b− d)∗(b− d))‖ ≥ ‖(ω ⊗ idCr(H))((b− di)
∗(b− di))‖ > ε2.
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It follows from this that b /∈ α(B)(1⊗ Cr(H)), which is a contradiction.
Consider now V ∗i . As α0 preserves also this set, the above proof shows that the matrix

W = (wml)
k
m,l=1 ∈Mk(Pol(H)) determined by the condition

(3.4) α(fl) =

k∑
m=1

fm ⊗ wml, l = 1, . . . , k,

is also unitary. A comparison of the formulas (3.2)-(3.4) yields the following equality:

WST = ST Ū ,

so that the unitarity of W transforms into the following condition:

I = S̄−1Ū∗S̄ST Ū(ST )−1 = ST Ū(ST )−1S̄−1Ū∗S̄,

or, putting Q = S̄ST ∈ GLk(C),

I = Ū∗QŪQ−1 = ŪQ−1Ū∗Q.

This means that the family (Ulm)kl,m=1 satisfies the defining relations for the generators of

Van Daele’s and Wang’s universal unitary algebra Au(Qi). Hence there exists a unique unital
∗-homomorphism πi : Au(Qi)→ Cr(H) such that

(3.5) πi(Ulm) = ulm ∈ Pol(H)

for l,m = 1, . . . , k. It is easy to see that πi intertwines respective coproducts; moreover πi
maps the ∗-algebra Bu(Qi) spanned by the elements of type ulm into Pol(H) (and even more
specifically into Rα(H)). Consider the algebraic free product of all the respective corestrictions
of morphisms πi:

πα,H = ?i∈I πi : DV → Rα(H).

Note that the image of πα,H is actually equal to Rα(H) = Rα0(H).

III
In the third step we introduce another class of ∗-homomorphisms which generalise actions

in CalgB,V and establish some formulas satisfied by these homomorphisms.

In the rest of the proof we will only consider algebraic actions and denote them simply by
α. We need to consider a larger class of ∗-homomorphisms from DV into algebras of functions
on compact quantum groups. This idea comes from [QS]. Denote the collection of all finite

sequences (α1,H1), (α2,H2), · · · , (αk,Hk) ∈ CalgB,V (k ∈ N) by TC . For each such sequence

T ∈ TC consider the ∗-homomorphism αT : B → B � Pol(H1)� · · · � Pol(Hk) defined by

αT = (α1 ⊗ idPol(H2) ⊗ · · · ⊗ idPol(Hk)) · · · (αk−1 ⊗ idR(Hk))αk

(αT should be thought of as reflecting the composition of consecutive actions of H1, · · · ,Hk

on B – note however it need not be an action of the group H1 × · · · × Hk). Similarly for a
sequence T as above consider the mapping πT : DV → Pol(H1)� · · · � Pol(Hk) given by

πT = (πα1,H1 ⊗ · · · ⊗ παk,Hk) ◦∆k−1,

where ∆k : DV → D⊗kV is the usual iteration of the coproduct of DV (and ∆0 := idDV ). Note
that if T, S ∈ TC and TS denotes the concatenation of the sequences, we have formulas

(3.6) αTS = (αT ⊗ id)αS ,

(3.7) πTS = (πT ⊗ πS) ◦∆.
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Define a linear map β : B → B � DV via the linear extension of the formula (considering
separately each i ∈ I and the orthogonal basis e1, . . . , eki ∈ Vi):

β(el) =

ki∑
m=1

em ⊗ Uml, l = 1, . . . , ki.

Observe that although β need not be a ∗-homomorphism, it is unital and moreover is a
coalgebra morphism:

(3.8) (β ⊗ idDV )β = (idB ⊗∆)β

(it is enough to check the above equality on all the elements el, where it is elementary).
Moreover we have

(3.9) β(B)(1�DV ) = B �DV ;

indeed, it is enough to show that the left hand side contains any element of the form e
(i)
l � 1,

where e
(i)
l is one of the basis elements of Vi. The latter elements can be obtained from the

expressions of the type
ki∑
m=1

β(e(i)
m )(U (i)

lm)∗.

Further we have for each T ∈ TC
(3.10) αT = (idB ⊗ πT ) ◦ β.
Indeed, if the length of the sequence T is 1, then the formula above follows directly from the

definition of πα,H for (α,H) ∈ CalgB,V . Further, for any two sequences T, S ∈ TC for which (3.10)

holds we have (using (3.6), (3.7) and (3.8))

αTS = (αT ⊗ id)αS = (((idB ⊗ πT ) ◦ β)⊗ id) ◦ (idB ⊗ πS) ◦ β
= (idB ⊗ πT ⊗ πS) ◦ (β ⊗ idDV ) ◦ β = (idB ⊗ πT ⊗ πS) ◦ (idB ⊗∆)β

= (idB ⊗ πTS)∆,

so (3.10) follows by induction for all sequences in TC .

IV
Here we define the compact quantum group G which will turn out to be our universal

object.

Let I0 =
⋂
T∈TC KerπT (the class of objects in CalgB,V need not be a set, but we can get around

this problem in the usual way, identifying isomorphic objects and bounding the dimension
of the algebras considered). Then I0 is a two-sided ∗-ideal in DV . We will show that it
is also a Hopf ∗-ideal, i.e. that if q : DV → DV /I0 is the canonical quotient map, then
(q ⊗ q)∆(I) = {0}. To this end it suffices (via the usual application of slice functionals) to
show that if S, T are sequences in TC then for each b ∈ I we have

(3.11) (πT ⊗ πS)∆(b) = 0.

This however follows from (3.7). Thus the unital ∗-algebra DV /I0 is in fact a CQG algebra.
Denote the corresponding compact quantum group by G (so that Pol(G) = D/I0) and the
quotient ∗-homomorphism from D onto DV /I0 by q. The construction above shows that

(3.12) (q ⊗ q) ◦∆DV = ∆G ◦ q.
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V
In this step we show that the quantum group G acts on B in a V-preserving way.
Let αu : B → B � Pol(G) be given by

(3.13) αu = (idB ⊗ q) ◦ β.

We want to show that αu is a ∗-homomorphism. To this end it suffices to show that if a, b ∈ B
then

β(a∗)− β(a)∗ ∈ B � I0, β(ab)− β(a)β(b) ∈ B � I0,

or, in other words, that for all T ∈ TC

(idB ⊗ πT )(β(a∗)− β(a)∗) = 0, (idB ⊗ πT )(β(ab)− β(a)β(b)) = 0.

The above formulas are however equivalent (by the fact that idB ⊗ πT is a ∗-homomorphism
and by (3.10)) to the formulas

αT (a∗)− αT (a)∗ = 0, αT (ab)− αT (a)αT (b) = 0,

which are clearly true as each αT is defined as a composition of ∗-homomorphisms. The fact
that αu satisfies condition (ii) in Definition 3.4 follows by putting together (3.13), (3.8) and
(3.12). Condition (iii) in Definition 3.4 can be checked directly. Finally the nondegeneracy
condition (i) is a consequence of (3.13), (3.9) and the fact that q : D → Pol(G) is a surjective
homomorphism.

Hence (αu,G) ∈ CalgB,V . The fact that the action αu is faithful follows from the construction.

VI
Finally we show that the pair (αu,G) is the final object in CalgB,V .

Consider any object (α,H) in CalgB,V . Recall the map πB,H : DV → Pol(H). The kernel of

πB,H is contained in I0; hence there exists a unique map π′ : DV /I0 → Pol(H) such that
πB,H = π′ ◦ q. Using the fact that πB,H intertwines the coproducts of DV and Pol(H) together
with the formula (3.12) we obtain that π′ : Pol(G) → Pol(H) is a morphism of compact
quantum groups. Similarly we compute

(idB ⊗ π′)αu = (idB ⊗ π′)(idB ⊗ q)β = (idB ⊗ πα,H) ◦ β = α,

where the last equality follows from (3.10). Thus π′ is a desired morphism in CalgB,V between

(α,H) and (αu,G). Its uniqueness can be easily checked using the fact that the elements of

the type q(U (i)
lm), i ∈ I, l,m = 1, . . . , ki generate Pol(G) as a ∗-algebra. �

The first part of the proof was inspired by the arguments in Section 4 of [Gos]. Here however
we avoid any references to the Dirac operator and work directly with the filtration of the
underlying C∗-algebra. Soon after the article [BS3] appeared, the construction was generalised
by Thibault de Chanvalon to the context of orthogonal filtrations of Hilbert modules, see
[TDC].

The following corollary mirrors a similar observation for quantum symmetry groups of finite
spaces.
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Corollary 3.7. Let (B, ω, (Vi)i∈I) be a C∗-algebra with an orthogonal filtration and let (αu,Gu)
be the universal object in CB,V . If (α,G) ∈ CB,V and the action α is faithful, then the mor-
phism πα : Pol(Gu)→ Pol(G) constructed in Theorem 3.6 is surjective. In other words, G is
a quantum subgroup of Gu.

Proof. It suffices to observe that it follows from the construction in the proof of Theorem 3.6
that the image of the morphism γα contains Rα(G). �

In some cases certain properties of the universal quantum symmetry group Gu follow di-
rectly from certain properties of the filtration.

Theorem 3.8. Let (B, ω, (Vi)i∈I) be a C∗-algebra with an orthogonal filtration and let G be
its quantum symmetry group, with a corresponding action α : B→ B⊗ C(G). The following
implications hold:

(i) if ω is a trace then Gu is a compact quantum group of Kac type;
(ii) if there exists a finite set F ⊂ I such that the union of subspaces

⋃
i∈F Vi generates B

as a C∗-algebra, then Gu is a compact matrix quantum group;
(iii) if ω is a trace, and there exists i ∈ I such that Vi generates B as a C∗-algebra, and

{e1, · · · , ek} is an orthonormal basis of Vi with respect to the scalar product determined
by ω (so that ω(e∗l em) = δlm1 for l,m = 1, . . . , k), then the matrix U = (ulm)kl,m=1 of

elements of C(G) determined by the condition

α(em) =
k∑
l=1

el ⊗ ulm, j = 1, . . . , k,

is a fundamental unitary representation of G (and Ū is also unitary). In particular
G is a quantum subgroup of U+

k .

Proof. It suffices to look at the proof of Theorem 3.6 and note that if ω is a trace and
{e1, . . . , ek} is an orthonormal basis of Vi then {e∗1, . . . , e∗k} is an orthonormal basis of V ∗i , so
that the matrix Qi appearing in that proof is equal to Ik. �

In the following we will discuss several examples of quantum symmetry groups associated
to orthogonal filtrations. Here we note one easy case, formulated as an exercise.

Exercise 3.1. Let B be a finite-dimensional C∗-algebra with a faithful state ω. Prove that
the quantum symmetry group QAUT(B, ω) may be viewed as the quantum symmetry group
of a C∗-algebra equipped with an orthonormal filtration.

3.3. Filtrations related to discrete groups – general framework. Let Γ be a discrete
group. As before, the elements of the reduced group C∗-algebra will be denoted in the same
way as the elements of Γ; in particular we identify the group ring C[Γ] as a subalgebra of
C∗r(Γ) via C[Γ] = span{γ : γ ∈ Γ}. The canonical trace on C∗r(Γ) is given by the continuous
extension of the formula:

τ(γ) =

{
1 if γ = e
0 if γ 6= e

(compare this formula to that in (1.2)). We will consider below partitions of Γ into finite sets,
always assuming that {e} (where e denotes the neutral element of Γ) is one of the sets in the
partition. The following lemma is straightforward.
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Lemma 3.9. If F = (Fi)i∈I is a partition of Γ into finite sets and V Fi := span{γ : γ ∈ Fi} ⊂
C∗r(Γ) (i ∈ I), then the pair (τ, (V Fi )i∈I) defines an orthogonal filtration of C∗r(Γ).

Definition 3.10. The quantum symmetry group of (C∗r(Γ), τ, (V Fi )i∈I), defined according to

Theorem 3.6, will be called the quantum symmetry group of Γ̂ preserving the partition F and
denoted QSYMΓ,F .

For a discrete group Γ and any vector space V we will consider the linear maps fγ :
V � C[Γ]→ V (γ ∈ Γ) defined by the linear extension of the prescription

fγ(γ′ ⊗ v) = δγ,γ′v, γ′ ∈ Γ, v ∈ V.

Definition 3.11. Let G be a compact quantum group and assume that α : C∗r(Γ)→ C∗r(Γ)⊗
C(G) is an action of G on C∗r(Γ). Let F = (Fi)i∈I be a partition of a discrete group Γ into
finite sets. The action α is said to preserve F if

(i) α : C[Γ]→ C[Γ]� C(G);
(ii) for all i 6= j ∈ I and γ ∈ Fi there is fγ |α(Fj) = 0.

Proposition 3.12. Let F = (Fi)i∈I be a partition of a discrete group Γ into finite sets. The

quantum symmetry group of Γ̂ preserving the partition F is the universal compact quantum
group G acting on C∗r(Γ) via an F preserving action. Moreover if for some i ∈ I the subset
F1 = {γ1, . . . , γk} generates Γ as a group, then the matrix U = (ulm)kl,m=1 ∈Mk(C(G)) given
by

α(γm) =
k∑
l=1

γl ⊗ ulm, m = 1, . . . , k,

is a fundamental unitary representation of G.

Proof. The first part of the proposition follows from the comparison of the conditions defining
respective classes of quantum group actions (the one in Definition 3.2 and the one in Definition
3.11). The second is a consequence of Theorem 3.8. �

A particular case of the above construction, motivated by the quantum isometry groups of
Goswami, was studied earlier in detail in [BhS]. Let Γ be a finitely generated group with a
fixed symmetric generating set S and the related word length l : Γ→ N0. Then the collection
F = {l−1({n}) : n ∈ N0} is a partition of Γ. The corresponding quantum symmetry group

QSYMΓ,F is called the quantum isometry group of Γ̂ and denoted QISO(Γ̂) (or QISO(Γ̂, S)).
For the justification of this terminology we refer to [Gos] and [BhS] – a hint can be found in
the following exercise.

Exercise 3.2. Consider the group Z with the usual generating set {−1, 1}. Compute the

corresponding quantum isometry group QISO(Γ̂). Note that we can view it as the universal

compact group acting on Ẑ = T in a manner preserving the metric of T!

3.4. Quantum isometry group of the dual of the free group. In this section we will fix
n ∈ N and consider Fn, the free group on n generators equipped with the standard symmetric
generating set S = {s1, s

−1
1 , . . . , sn, s

−1
n } and the word-length function l induced by S.

Define the matrix Qn to be the 2n by 2n block-diagonal matrix with the only non-zero

entries built of 2 by 2 blocks

[
0 1
1 0

]
put along the diagonal. The following result combines

Theorem 5.1 of [BhS] and results of Sections 2 and 3 of [BS1].
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Theorem 3.13. Consider the universal unital C∗-algebra Ah(n) generated by the collection
of elements (ui,j : i, j = 1, . . . , 2n) satisfying the following properties:

(i) each uij (i, j = 1, . . . , 2n) is a partial isometry, i.e. uiju
∗
ijuij = uij;

(ii) the matrix U = (uij)
2n
i,j=1 is a unitary;

(iii) we have U = QnŪQn.

Then Ah(n) is C(H+
n,0) for a certain compact quantum group H+

n,0, and U ∈ M2n(Ah(n)) is

a fundamental unitary representation of H+
n,0. Moreover H+

n,0 is the quantum isometry group

QISO(F̂n).

Let us consider the case n = 2 in more detail. The fundamental unitary representation of

QISO(F̂2) introduced above takes the form

U =


A B C D
B∗ A∗ D∗ C∗

E F G H
F ∗ E∗ H∗ G∗

 ,
where each of the operators A, . . . ,H is a partial isometry and the defining relations of Ah(2)
are equivalent to stating that 

PA PB PC PD
PE PF PG PH
QB QA QD QC
QF QE QH QG

 ,
where PA = AA∗, QA = A∗A, etc., is a magic unitary. The action of H+

2,0 on C∗r(F2) is then

determined by the following conditions (recall that s1, s2 denote the generators of F2)

α(s1) = s1 ⊗A+ s−1
1 ⊗B + s2 ⊗ C + s−1

2 ⊗D,

α(s2) = s1 ⊗ E + s−1
1 ⊗ F + s2 ⊗G+ s−1

2 ⊗H.
As the notation above suggests, in fact we can view the quantum groups H+

n,0 as a part of a

two-parameter family H+
n,m, where for example H+(0,m) is the m-th quantum hyperoctahedral

group, i.e. the quantum symmetry group of the graph built of m connected pairs of points (m
‘bars’) – see [BS1] and [BBC2].

The free group Fn admits another natural length function, a so called block length b. The
block length is defined in the following way: we view Fn as the free product of n copies of
Z, denote each of these copies by Γi (i = 1, . . . , n), write any element γ ∈ Fn as a reduced
word in elements in each of the groups Γi, and declare the length of this word to be the block
length of γ; thus

b(γ) = k

if
γ = γi1 · · · γik , ij ∈ {1, . . . , n}, ij 6= ij+1, γij ∈ Γij \ {e}.

The idea is that each element γij ∈ Γij in the decomposition above corresponds to a block in
γ. So for example

b(sk11 s
k2
2 s

k3
1 ) = 3, if only k1, k2, k3 6= 0.

Consider the filtration of Γ given by the sets Fl,m = {γ ∈ Fn : l(γ) = l, b(γ) = m} (l,m ∈
N0, l ≤ m). It is clear that each Fl,m is finite and closed under taking inverses. Write
Fb := {Fl,m : l,m ∈ N0, l ≤ m}. Then we obtain the following result (Section 5 of [BS3]).
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Theorem 3.14. Consider the universal unital C∗-algebra Ahs(n) generated by the collection
of elements (ui,j : i, j = 1, . . . , 2n) satisfying the following properties:

(i) each uij (i, j = 1, . . . , 2n) is a normal partial isometry, i.e. uiju
∗
ijuij = uij and

u∗ijuij = uiju
∗
ij;

(ii) the matrix U = (uij)
2n
i,j=1 is a unitary;

(iii) we have U = QnŪQn.

Then Ahs(n) is C(K+
n ) for a certain compact quantum group K+

n , and U ∈ M2n(Ahs(n)) is
a fundamental unitary representation of K+

n . Moreover K+
n is the quantum symmetry group

QSYMFn,Fb.

It is easy to see thatK+
n (as a universal quantum group acting on C∗r(Fn) in a way preserving

both the word and block length) is a quantum subgroup of H+
n,0.

For several more examples of computations of quantum isometry groups of duals of finitely
generated discrete groups we refer for example to the articles [BhS], [L-DS], [TQi] and [SkS].

4. Further constructions, connections to the concept of the liberated
quantum groups

In this lecture we describe projective limits of quantum symmetry groups, present their
connections to Bratteli diagrams of AF algebras and discuss the example of the quantum
symmetry group of (a particular presentation of) the Cantor set. We finish by introducing a
connection of quantum symmetry groups with the so-called liberation procedure.

4.1. Projective limits of quantum symmetry groups. Suppose further that (Bn)∞n=1

is an inductive system of unital C∗-algebras, with the connecting unital ∗-homomorphisms
ρn,m : Bn → Bm. Assume that each Bn is equipped with a faithful state ωn, an orthogonal
filtration Vn (with respect to φn) and that we have the following compatibility condition: for
each n,m ∈ N, n < m, and each V ∈ Vn we have ρn,m(V ) ∈ Vm. Note that this implies the
following two facts:

(i) for all n,m as above we have ωm ◦ ρn,m = φm,
(ii) each of the maps ρn,m is injective (and thus so are the maps ρn,∞).

If the above assumptions hold, we will say that (Bn,Vn)∞n=1 is an inductive system of C∗-
algebras equipped with orthogonal filtrations. We can then speak about a natural inductive
limit filtration V∞ of the limit algebra B∞, defined in the following way: a subspace V ⊂ B∞
belongs to V∞ if and only if there exists n ∈ N and Vn ∈ Vn such that V = ρn,∞(Vn). The
arising filtration satisfies then the orthogonality conditions with respect to the inductive limit
state ω∞ ∈ B∗∞.

Note that there is one subtlety here: although we can always construct the inductive limit
filtration, the inductive limit state need not be faithful on B∞, so we need not be in the
framework of Definition 3.1 – we only know that ω∞ is faithful on the dense subalgebra⋃
n∈N

⋃
V ∈Vn

ρn,∞(V ) of B∞. Suppose in addition that ω∞ is a trace (equivalently, each of the

states ωn is tracial). Then it is automatically faithful (as its null space, {a ∈ B∞ : ω∞(a∗a) =
0}, is an ideal, cf. [Bla, Proposition II.8.2.4]).

The following result was shown in [SkS]; it is based on a straightforward diagram chasing.

Theorem 4.1. Let (Bn,Vn)∞n=1 be an inductive system of C∗-algebras equipped with orthogonal
filtrations and assume that each of the states defining the orthogonality of the filtrations Vn is
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tracial. Let V∞ denote the orthogonal filtration of B∞ arising as the inductive limit. Denote
the respective quantum symmetry groups of (Bn,Vn) and (B∞,V∞) by Gn and G. Then

G = lim←−Gn.

The conditions in the above theorem are rather restrictive; we will present one application
in the next subsection, but here would also like to note that in some cases one can identify
the projective limit of quantum symmetry groups as a quantum symmetry group (of some
new filtration) even if they are not satisfied. For an example of such a situation in the context
of quantum isometry groups of finite (and infinite) symmetric groups we refer to Section 5 of
[SkS].

4.2. Quantum symmetry groups of Bratteli diagrams. We will describe now a con-
struction of a natural quantum symmetry group for an AF C∗-algebra equipped with a
faithful state, introduced first in [BhGS].

Let B denote a unital AF C∗-algebra and let (Bn)∞n=1 be an increasing limit of finite-
dimensional unital C∗-subalgebras of B whose union is dense in B. In addition put B0 = C1blg.
Further fix a faithful tracial state ω on B. In such a situation we can introduce a natural
orthogonal filtration of B defining inductively V0 = B0, Vn+1 = Bn+1 	 Vn := {b ∈ Bn+1 :
ω(b∗v) = 0, v ∈ Vn} for all n ∈ N. It is easy to verify that V = (Vn)n∈N0 satisfies the
conditions in Definition 3.1. Thus we can use Theorem 3.6 to define the quantum symmetry
group QSYMV ; for historical reasons we call it the quantum isometry group of (B, ω) and
denote QISOB,ω.

Theorem 4.12 shows that QISOB,ω = lim←−Gn, where Gn denotes for each n ∈ N the quantum

symmetry group of the orthogonal filtration (Vk)k=0,...,n of the algebra Bn. In the particular
case where Bn is commutative and the state is the canonical trace, Theorem 2.6 of [BhGS]
shows that Gn is in fact isomorphic to the quantum symmetry group QSYM(Gn), where Gn is
the Bratteli diagram of Bn (in other words the Bratteli diagram of B ‘cut’ at the n-th level).
Thus, slightly abusing the terminology, we can also call the QISOB,ω the quantum symmetry
group of the Bratteli diagram of B.

Below we present one particular example related to the quantum isometry group of the
‘middle-third’ Cantor set.

Theorem 4.2 ([BhGS]). Let C(C) be the AF C∗-algebra arising as a limit of the unital
embeddings

C2 −→ C2 ⊗ C2 −→ C2 ⊗ C2 ⊗ C2 −→ · · · .
Suppose that τ is the canonical trace on C(C). Then QISOC(C),τ = lim←−Gn, where C(G1) =

C(Z2) and for n ∈ N we have

C(Gn+1) = (C(Gn) ? C(Gn))⊕ (C(Gn) ? C(Gn)).

Further Cu(QISOC(C),τ ) is the universal unital C∗-algebra generated by the family of selfadjoint
projections

{p} ∪
⋃
n∈N
{pm1,...mn : m1, . . .mn ∈ {1, 2, 3, 4}}

subjected to the following relations:

p1, p2 ≤ p, p3, p4 ≤ p⊥,
2Note that although Theorem 4.1 was formulated only for tracial ω, here the assumptions guarantee that

the state on the limit filtration is faithful, so that the claims of that theorem remain valid, see [BhGS].
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pm1,...,mn,1, pm1,...,mn,2 ≤ pm1,...,mn , pm1,...,mn,3, pm1,...,mn,4 ≤ p⊥m1,...,mn

(n ∈ N,m1, . . .mn ∈ {1, 2, 3, 4}).

The quantum group structure of QISOC(C),τ can be read out for example from the descrip-
tion in the second part of the above theorem, we refer the reader to Theorem 3.1 of [BhGS] for
the details. The inductive procedure leading to QISOC(C),τ may be visualised by the sequence
of pictures, representing consecutive subdivisions of a square. The fractal structure of the
limiting algebra is apparent. Note also that the classical symmetry group of the tree-type
graph we consider can be graphically interpreted as a one-dimensional version of the above
two-dimensional picture (so that the classical symmetry group at the n-th level is simply

equal to
∏2n

i=1 Z2).

Exercise 4.1. Compute explicitly G2 for the example studied in Theorem 4.2.

We will note below one consequence of the above observation, showing that quantum group
actions behave very differently from the classical ones. We first prove the relevant classical
property.

Lemma 4.3. Suppose that (X, dX), (Y, dY ) are compact metric spaces and T : X × Y →
X×Y is an isometry satisfying the following condition: αT (C(X)⊗1Y ) ⊂ C(X)⊗1Y , where
αT : C(X × Y )→ C(X × Y ) is given by the composition with T . Then T has to be a product
isometry, i.e. T = TX × TY where TX ∈ ISO(X), TY ∈ ISO(Y ).

Proof. Denote the family of isometries of X × Y satisfying the conditions of the lemma by
ISOX(X × Y ). We claim that ISOX(X × Y ) is a group. Recall that ISO(Z), the family of all
isometries of a compact metric space (Z, dZ), is a compact group when considered with the
topology of uniform convergence (equivalently, pointwise convergence; equivalently, metric
topology given by d(T1, T2) =

∑∞
i=1

1
2i
dZ(T1(zi), T2(zi)), where {zi : i ∈ N} is a countable

dense subset of Z). It is easy to that ISOX(X × Y ) is a unital closed subsemigroup of
ISO(X ×Y ). Thus it is a compact semigroup satisfying the cancellation properties and it has
to be closed under taking inverses.

Suppose now that T ∈ ISOX(X × Y ). Then if f ∈ C(X) we have for all x ∈ X, y, y′ ∈ Y
(f ⊗ 1Y )(T (x, y)) = αT (f ⊗ 1Y )(x, y) = αT (f ⊗ 1Y )(x, y′) = (f ⊗ 1Y )(T (x, y′)).

This is equivalent to the fact that T is given by the formula

T (x, y) = (h(x), g(x, y)), x ∈ X, y ∈ Y,
for some transformations h : X → X, g : X ×Y → Y . The fact that T is an isometry implies
in particular that for all x, x′ ∈ X, y ∈ Y .

(4.1) dX(x, x′) = dX(h(x), h(x′)) + dY (g(x, y), g(x′, y)).

In particular h : X → X is a contractive transformation. As by the first part of the proof
T−1 ∈ ISOX(X × Y ), there exist transformations h′ : X → X, g′ : X × Y → Y such that

T−1(x, y) = (h′(x), g′(x, y)), x ∈ X, y ∈ Y,
It is easy to see that h′ is the inverse transformation of h, and as by the same argument
as above we see that h′ is a contractive transformation, hence h has to be an isometry.
This together with formula (4.1) implies that g : X × Y → Y does not depend on the first
coordinate, so that T must be a product isometry. In particular ISOX(X × Y ) = ISOX ×
ISOY . �
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Theorem 4.2 shows that the result above has no counterpart for quantum group actions,
even on classical spaces. We could think of ‘elements’ of G2 as quantum isometries acting
on the Cartesian product of 2 two-point set, ‘preserving’ the first coordinate in the sense
analogous to the one in the lemma above. If this forced elements of G2 to be product
isometries, we would necessarily have G2 = G1 × G1; in particular G2 would have to be a
classical group.

4.3. Liberated quantum groups. A liberation procedure for classical compact groups, al-
beit not formally well-defined, has in recent years proved to be a very important concept,
related to quantum symmetry groups. The starting point is the following straightforward
observation.

Proposition 4.4. Let G be a compact quantum group. Consider the commutator ideal J ⊂
C(G), i.e. the smallest closed two-sided ideal of C(G) containing all elements of the form
ab − ba with a, b ∈ C(G). Then the algebra C(G)/J has the structure of an algebra of
continuous functions on a compact group G, which we denote Gclas.

Exercise 4.2. Prove the above proposition.

The key fact behind the liberation idea is the observation that sometimes one can ‘re-
construct’ in a natural way G from Gclas by finding a suitable presentation of C(Gclas) and
dropping the commutation relation.

The liberation procedure can then be informally described as follows:

– take your favourite compact matrix group G with a fixed fundamental representation
U = (uij)

n
i,j=1 ∈Mn(C(G));

– describe properties of U via a family of relations R satisfied by its (mutually com-
muting!) entries;

– drop the commutativity assumption – i.e. consider the universal C∗-algebra A gener-
ated by elements (ũij : i, j = 1, . . . , n) satisfying all the relations R apart from the
commutativity requirement;

– show that A = C(G) for a certain compact quantum group G, Ũ = (ũij)
n
i,j=1 is a

fundamental representation of G and G = Gclas.

As examples of liberations of the type described above we mention the passages Sn → S+
n ,

ON → O+
n , Un → U+

n or Hn → H+
n (where we consider respectively classical and free

permutation, orthogonal, unitary and hyperoctahedral groups). For example in the symmetric
group case one first realises C(Sn) as the universal commutative C∗-algebra generated by n2

selfadjoint projections (pij : i, j = 1, . . . , n) such that (pij)
n
i,j=1 is a magic unitary.

It should be clear that the liberation procedure involves several ambiguities (the choice of
a fundamental representation; and then the choice of relations describing it). It has however
revealed many interesting connections to free probability, random matrix theory and quan-
tum notions of independence. Probably most striking and initially motivating aspect of the
liberation procedure is the relation between the representation theories of G and its liberated
quantum partner G, appearing on the level of combinatorial descriptions via categories of
partitions (see [BSp]).

Here we only note that the symmetric group case mentioned above is an example of a
situation in which the quantum symmetry group of a given structure X (in this case a finite
set) is the liberation of the classical symmetry group of X.

Recall the matrix Qn ∈ M2n defined in the beginning of Subsection 3.4. The following
theorem comes from [BS1].
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Theorem 4.5. Let n ∈ N. The classical version of H+(n, 0) is Tn o Hn; moreover as the
algebra C(Tn o Hn) is the universal commutative C∗-algebra generated by elements (ui,j :
i, j = 1, . . . , 2n) such that

(i) each uij (i, j = 1, . . . , 2n) is a partial isometry, i.e. uiju
∗
ijuij = uij;

(ii) the matrix U = (uij)
2n
i,j=1 is a unitary;

(iii) we have U = QnŪQn.

Thus we can view H+(n, 0) as the liberation of Tn oHn

Exercise 4.3. Prove the above result.

Recalling that TnoHn is the usual isometry group of Tn, Theorems 4.5 and 3.13 show that

here the quantum isometry group of a structure X (i.e. F̂n) is the liberation of the classical

symmetry group of X (i.e. Tn ≈ Ẑn), where X can be viewed as the liberation of X!
For a similar phenomenon related to viewing O+

n as the quantum isometry group of a free
(liberated) sphere we refer to [BGo].

5. Other structures related to quantum symmetry groups and open problems

In this, last lecture we present certain examples of noncommutative C∗-algebras which are
not algebras of continuous functions on compact quantum groups, but are closely related to
quantum symmetry groups described earlier. They are in a sense of a ‘rectangular’ character.
We end by presenting some open problems.

5.1. Quantum homogeneous spaces inside S+
n and O+

n .

Definition 5.1. Let G be a compact quantum group with a quantum subgroup H and the
associated surjective unital ∗-homomorphism π : Cu(G)→ Cu(H) intertwining the respective
coproducts. The algebra of continuous functions on the quantum homogeneous space G/H is
defined as

(5.1) Cu(G/H) = {a ∈ Cu(G) : (π ⊗ id)(∆(a)) = 1⊗ a}.

Note that Cu(G/H) is a unital C∗-algebra, which can be viewed as the fixed point space of
the canonical right action (π⊗ id)◦∆G of H on Cu(G). Further the (universal) action of G on
Cu(G) via the coproduct restricts to a (universal) action β of G on Cu(G/H); the resulting
action is ergodic. These observations go back to [Po2].

Exercise 5.1. State purely algebraic versions of the above facts and prove both the algebraic
and topological versions.

The above action is ergodic, and the unique invariant state (note that these notions, intro-
duced in Section 1, have obvious versions for the right actions) is the Haar state on G.

Classically ergodic actions of a compact group G are in one-to-one correspondence with
homogeneous spaces for G (so also with compact subgroups of G). The quantum situation is
far more complicated (again, for examples of this we refer to [Po2], and for a recent analysis
of the concept of quantum homogeneous spaces in the framework of locally compact quantum
groups to the article [KaS]). A word of warning is in place – some authors use the terminol-
ogy ‘quantum homogeneous space of a quotient type’ to describe the concept introduced in
Definition 5.1.

Note the following, not too difficult result, shown in [BSS].
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Proposition 5.2. Let G be a compact quantum group with two quantum subgroups H1, H2

and the associated surjective unital ∗-homomorphisms πi : Cu(G)→ Cu(Hi) intertwining the
respective coproducts (i = 1, 2). Then Cu(G/H1) = Cu(G/H2) if and only if H1 is isomorphic
to H2 as a quantum subgroup of G, i.e. there exists an isomorphism γ : Cu(H1) → Cu(H2)
such that γ ◦ π1 = π2.

In the rest of this section we will focus on quantum symmetry groups O+
n and S+

n . As
the treatment and results are identical in both cases (and in fact can be also extended to
other situations, see [BSS]), we will write simply Gn to denote one of these quantum groups
(n ∈ N), and by Gn their classical versions; one only has to remember that for example when
we write Gk ⊂ Gn for k < n we mean of course S+

k ⊂ S
+
n and O+

k ⊂ O
+
n , not say O+

k ⊂ S
+
n .

Consider then k, n ∈ N, k < n. We will always work with the diagonal embeddings of Gk
into Gn and Gk into Gn. This on the level of fundamental unitary representations means that
we consider as the morphism identifying Gk as a quantum subgroup of Gn the map induced
by the formula

uij 7→

{
vij if i, j ≤ k
δij1Cu(Gk) otherwise

,

where (uij)
n
i,j=1 is the canonical fundamental representation of Gn and (vij)

k
i,j=1 the canonical

fundamental representation of Gk (and do the same for the classical versions). This means that
we can consider the quantum homogeneous spaces Gn/Gk, as well as the classical homogeneous
spaces Gn/Gk. The following result offers alternative descriptions of the latter spaces.

Proposition 5.3. Let k, n ∈ N , k < n and let Gk ⊂ Gn denote the diagonal embedding of the
symmetric or orthogonal groups. Denote the canonical fundamental unitary representation of
Gn by (uij)

n
i,j=1. Then the algebra Cu(Gn/Gk), defined as in (5.1) has the following alternative

descriptions:

(a) it coincides with the unital C∗-subalgebra C×(Gn/Gk) of Cu(Gn) = C(Gn) generated
by the elements {uij : i = k + 1, . . . n, j = 1, . . . n};

(b) it is isomorphic to the universal unital commutative C∗-algebra C+(Gn/Gk) generated
by selfadjoint elements (vij) : i = k + 1, . . . n, j = 1, . . . n such that
(a) the rectangular matrix V = (vij)

n
i=k+1,j=1 is a coisometry: V V ∗ = I;

(b) in case where Gn = Sn each vij is a projection.

Exercise 5.2. Prove the above statement.

Interestingly, both algebras C×(Gn/Gk) and C+(Gn/Gk) have natural quantum versions,
but the above proposition does not extend to the quantum setup, as we describe below.

Definition 5.4. Let k, n ∈ N , k < n and let Gk ⊂ Gn denote the diagonal embedding
of the symmetric or orthogonal quantum groups. Denote the canonical fundamental unitary
representation of Gn by (uij)

n
i,j=1. Let C×(Gn/Gk) be the C∗-subalgebra of Cu(Gn) generated

by the elements {uij : i = k+ 1, . . . n, j = 1, . . . n} and let C+(Gn/Gk) be the universal unital
C∗-algebra generated by selfadjoint elements (vij) : i = k + 1, . . . n, j = 1, . . . n such that

(i) the rectangular matrix V = (vij)
n
i=k+1,j=1 is a coisometry: V V ∗ = I;

(ii) in case where Gn = S+
n each vij is a projection.

It is easy to check that C×(Gn/Gk) is a quotient of C+(Gn/Gk) and that C×(Gn/Gk) is a
subalgebra of C(Gn/Gk). On the other hand we have the following theorem.
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Theorem 5.5. Let k, n ∈ N, n ≥ 4, 2 ≤ k ≤ n − 1, and let Gk ⊂ Gn denote the diagonal
embedding of the symmetric or orthogonal quantum groups. Then the inclusion C×(Gn/Gk) ⊂
C(Gn/Gk) is proper.

Proof. Denote by U = (uij)
n
i,j=1 the canonical fundamental representation of Gn and by

V = (vij)
k
i,j=1 the canonical fundamental representation of Gk. Let α := (π⊗ id)◦∆Gn denote

the canonical right action of Gk on Cu(Gn), where π : Cu(Gn) → C(Gk) is the morphism
inducing the inclusion Gk ⊂ Gn.

Consider first the case 2 ≤ k ≤ n− 2. Fix a nontrivial projection p ∈ C(Z2), and consider
the following matrix:

p̃ =

(
p p⊥

p⊥ p

)
.

Further define B = Cu(Gk) ? C(Z2), let ν : Cu(Gn) → B be the surjection induced by the
mapping diag(V, p̃, 1n−k−2) 7→ U , and consider the right action β : B→ Cu(Gk)⊗ B given by
(the continuous linear extensions of) the formulas β(p) = 1⊗ p and

β(vij) =
k∑
s=1

vis ⊗ vsj , i, j = 1, . . . , k.

We have then β ◦ ν = (id⊗ ν)α, and further

Fixβ = ν(Fixα).

Indeed, the inclusion ⊃ follows directly from the intertwining relation above and the opposite
inclusion can be shown using conditional expectations onto the fixed point spaces, as

Fixβ = ((h⊗ id) ◦ β)(B) = ((h⊗ id) ◦ β)(ν(C(Gn))) = (h⊗ ν)α(C(Gn)) = ν(Fixα),

where h denotes the Haar state on Cu(Gk). Since ν(C×(Gn/Gk)) = C(Z2) ⊂ B, as subalgebras
of B, it suffices to find an element in Fixβ which is not in C(Z2). Define then

x = (h⊗ id)β(v11pv11) =
1

k

k∑
s=1

vs1pvs1

The last identity follows from an easily shown formula valid for all i, j, s = 1, . . . , k:

h(visvjs) =
1

k
δij .

As x ∈ Fixβ, it remains to show that x /∈ ν(C×(Gn/Gk)). Let q denote a non-trivial projection
in C(Z2) and consider the unital ∗-homomorphism ρ = η ? id : B → C(Z2) ? C(Z2), where
η : C(Gk) → C(Z2) is induced by the map V 7→ diag(q̃, 1k−2), with q̃ defined analogously to
p̃. If x ∈ ν(C×(Gn/Gk)), the element x would have to commute with p. Similarly ρ(x) would
have to commute with p′ = ρ(p). But ρ(x) = qp′q + q⊥p′q⊥, where q denotes the projection
generating the first copy of C(Z2) in C(Z2) ? C(Z2), and it is easy to see that qp′q + q⊥p′q⊥

does not commute with p′, for instance by working with a concrete model of C(Z2) ? C(Z2)
given by C∗(Z2 ? Z2). Thus x /∈ ν(C×(Gn/Gk)).

Let now k = n− 1 and put:

y = (h⊗ id)α(ukkunnukk) =
1

k

k∑
s=1

uskunnusk
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Then y ∈ C(Gn/Gk), and we need to show that y is not in C×(Gn/Gk). By ‘passing
to a quantum subgroup’ argument we see it suffices to do it for the free permutation group.
Assume then that we are in this case. As then one can show that C×(S+

n /S
+
k ) is commutative,

it suffices to show that y does not commute with unn. So, consider the surjection ρ′ : C(S+
n )→

C(Z2) ? C(Z2) induced by the following magic unitary matrix:

M =


1n−4 0 0 0 0

0 p 0 p⊥

0 0 q 0 q⊥

0 p⊥ 0 p 0
0 0 q⊥ 0 q


Here p and q the free projections generating C(Z2) ? C(Z2). Then ρ′(unn) = q, ρ′(y) =

p⊥qp⊥ + pqp, and we can finish as in the previous case.
�

The quantum group Gn acts in a natural way on each of the three C∗-algebras Cu(Gn/Gk),
C×(Gn/Gk), C+(Gn/Gk). Each of the respective actions is ergodic, and admits a unique
invariant tracial state (the tracial property is related to the fact that Gn is of Kac type).

Exercise 5.3. Prove these statements.

The last facts allow us to consider the ‘reduced’ versions of the above C∗-algebras, defined
simply as the images of the algebras with respect to the GNS representations of the respective
invariant states. The proof of the following result uses the connection between the quantum
group representations and combinatorics of partitions mentioned in the last lecture.

Theorem 5.6 ([BSS]). Let k, n ∈ N , k < n and let Gk ⊂ Gn denote the diagonal embedding
of the symmetric or orthogonal quantum groups. The reduced versions of the C∗-algebras
C×(Gn/Gk) and C+(Gn/Gk) are isomorphic.

5.2. Quantum partial permutations. We finish this set of lectures by presenting another
recently introduced in [BS4] example of C∗-algebras which are related to quantum symmetry
groups – more specifically free permutation groups. We begin with some classical definitions.

Definition 5.7. Let n ∈ N. A partial permutation of {1 . . . , n} is a bijection σ : X ' Y , with

X,Y ⊂ {1, . . . , n}. We denote by S̃n the semigroup formed by all such partial permutations
(with multiplication given by the ‘partial’ composition).

Note that the symmetric group Sn is a subgroup of S̃n. The embedding Sn ⊂ Mn(0, 1)

given by permutation matrices can be extended to an embedding κ : S̃n ⊂ Mn(0, 1) defined

as follows (σ ∈ S̃n, i, j = 1, . . . , n):

κ(σ)ij =

{
1 if σ(j) = i

0 otherwise

This observation motivates the following definition.

Definition 5.8. Let n ∈ N. Denote by Ãs(n) the universal unital C∗-algebra generated by
elements (pij : i, j = 1, . . . , n) such that

(i) each pij is an orthogonal projection;
(ii) for any i, j, k = 1, . . . , n such that j 6= k we have pijpik = pjipki = 0.
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We have then the following counterpart of Proposition 2.1.

Proposition 5.9. Let n ∈ N and use the notation of the above definition. The prescription

∆(pij) =
n∑
k=1

pik ⊗ pkj , i, j = 1, . . . , n

determines a unital ∗-homomorphism ∆ : Ãs(n) → Ãs(n) ⊗ Ãs(n) giving Ãs(n) the structure

of an algebra of continuous functions on a compact quantum semigroup, to be denoted S̃+
n and

called the free semigroup of partial permutations on n-elements.

Exercise 5.4. Prove that the classical version of S̃+
n , defined by the analogy with Proposition

4.4, is the semigroup S̃n.

The difference between the ‘generating matrix’ of orthogonal projections in Ãs(n) and a
magic unitary is that the sum of elements in each row and column need not be equal to 1.
This implies that the corresponding algebra is highly non-commutative already at n = 2! In
that case one can describe the C∗-algebraic structure precisely.

Theorem 5.10 ([BS4]). The C∗-algebra Ãs(2) is isomorphic to the unitization of D⊕D, where
D is the universal C∗-algebra generated by two projections. It can be explicitly realised in the
following isomorphic forms (below D∞ denotes the infinite dihedral group, and ε : C∗(D∞)→
C is the counit character, given by the extension of the formula ε(γ) = 1, γ ∈ D∞):

(i) {(x, y) ∈ C∗(D∞)⊕ C∗(D∞) : ε(x) = ε(y)};
(ii) {f ∈ C([0, 1];M2 ⊕M2) : f(0), f(1) diagonal and f(1)2,2 = f(1)4,4}.

It has been known for a long time that the free permutation groups are closely related
to Hadamard matrices, i.e. matrices with entries in T having mutually orthogonal rows (and
columns). In particular every Hadamard n by n matrix yields a representation of the algebra
As(n), and via the Hopf image construction due to Banica and Bichon ([BB2]) to a quantum
subgroup of S+

n . A rich source of the information on these facts and also on connections to
the subfactor theory can be found in a recent survey [Ba3]. It turns out that a very similar
relationship connects partial Hadamard matrices, i.e. rectangular n by k matrices with entries

in T and pairwise orthogonal rows, representations of Ãs(n) and quantum subsemigroups of

S̃+
n (see [BS4]). Here we only formulate the corresponding definitions and results (with the

obvious quantum semigroup analogues of the notions used earlier for quantum groups).

Definition 5.11. Let m,n ∈ N, m ≤ n. A matrix H ∈ MM×(T) is said to be a partial
Hadamard matrix, i.e. the matrix for which the vectors ξ1, . . . , ξm ∈ Cn defined as (ξl)i = Hli,
i = 1, . . . , n, k = 1, . . . ,m, are mutually orthogonal. We define further vectors ξl/ξk ∈ Cn
by coordinate-wise division and denote the rank-one projection in B(Cn) on ξl/ξk simply by
Pξi/ξj .

Theorem 5.12 ([BS4]). Let m,n ∈ N, m ≤ n. Every partial Hadamard matrix H ∈MM×(T)

defines a representation πH : Ãs(m)→ B(Cn) defined by the formula

π(pij) = Pξi/ξj , i, j = 1, · · ·m,

where pij denote the standard generators of Ãs(m). Further there exists a largest quantum

subsemigroup of S̃+
m, say SH , such that the algebra homomorphism πH factorises via the

quantum semigroup morphism γ : C(S̃+
m)→ C(SH).
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The word ‘largest’ above is understood via a certain universal property; for the details we
refer to [BS4].

5.3. Outlook and a list of open problems. In these lectures we only surveyed the land-
scape of quantum symmetry groups. In recent years they have become an arena and a source
of examples for investigations related to areas such as classical and free (and more generally
noncommutative) probability, theory of random matrices, noncommutative geometry and gen-
eral theory of operator algebras. As mentioned before, the richness of related combinatorial
structures is revealed in particular in the study of representation theory of quantum symme-
try groups ([BSp]). These structures may in turn be used to analyse geometric properties of
the dual discrete groups and to study C(G) and L∞(G) from the purely operator algebraic
viewpoint – a perfect example of that is the article [Bra], which sparked the interest in the
geometric theory of quantum groups (see [DFSW] and references therein). For more exam-
ples of the variety of contexts in which quantum symmetry groups play an important role we
refer to the surveys [BBC1] and [Ba3]. Here we want to finish with the following list of open
problems, related directly to the topics treated in these lectures.

– Which of the classical objects (such as finite graphs) admit quantum symmetries?
– More generally, when the structure of quantum symmetries is different from this of

classical ones? Does there exists a finite graph G such that the action of the symmetry
group of G on G is not ergodic, but the action of QSYM(G) on G is ergodic?

– Suppose that Γ is a finitely generated group, with two different generating sets S1

and S2. What properties are shared by the quantum isometry groups QISO(Γ̂, S1)

and QISO(Γ̂, S2)? Note that it is known that the latter quantum groups can be non-
isomorphic, see [BhS] and [L-DS].

– Under what condition is a quantum symmetry group of a given finite structure (a
graph, a filtration, etc.) finite?

– What is the ‘right’ notion of a quantum automorphism group of a given finite (quan-
tum) group? One possible definition was proposed in [BhSS], but it was shown later
in [KSW] that it always reduces to the classical symmetry group.

– How can one rigorously define locally compact quantum groups arising as quantum
symmetry groups of some infinite objects?
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