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Abstract. Recent results of M. Junge and Q. Xu on the ergodic prop-
erties of the averages of kernels in noncommutative Lp-spaces are applied
to the analysis of the almost uniform convergence of operators induced
by the convolutions on compact quantum groups.

The classical ergodic theory was initially concerned with investigating
the limits of iterations (or iterated averages) of certain transformations of
a measure space. Corresponding limit theorems were very quickly seen to
have natural generalisations in terms of the evolutions induced by operators
acting on the associated Lp-spaces (for an excellent treatment we refer to
[Kre]). The noncommutative counterpart of this theory is concerned with
investigation of limit properties for the iterations of operators acting on
von Neumann algebras (viewed as generalisations of classical L∞-spaces)
or, more generally, on noncommutative Lp-spaces associated with a von
Neumann algebra equipped with a faithful normal state. It turned out
that, after introducing appropriate counterparts of the classical notion of
almost everywhere convergence, one may consider in this generalised con-
text not only mean ergodic theorems, but also ‘pointwise’ ones. This has
been investigated intensively in the 70s and 80s by C.E. Lance, F. Yeadon,
R. Jajte and others. Several results were obtained for both the evolutions on
von Neumann algebras and on Lp-spaces associated with a faithful normal
trace. Recently M. Junge and Q. Xu in a beautiful paper [JX2] (whose main
results were earlier announced in [JX1]) proved new noncommutative max-
imal inequalities and thus extended many ergodic theorems to the context
of Haagerup Lp-spaces, which naturally arise when the considered state is
non-tracial.

In this paper we apply the results of [JX2] to obtain ergodic theorems for
the evolutions induced by the convolution operators on compact quantum
groups ([Wor1]). Although it is generally natural to view compact quantum
groups as C∗-algebras, due to the nature of the problems considered we
prefer the von Neumann algebraic framework. It arises naturally as every
compact quantum group is equipped with a Haar state and one can pass to
the corresponding GNS representation. The importance of this approach,
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where the Haar functional is a central notion from which in a sense the
whole theory is developed, is fully revealed in the context of locally compact
quantum groups ([KV1]). Here it provides us both with a von Neumann
algebra and with a canonical reference state on it.

The plan of the paper is as follows: after establishing notation and quot-
ing preliminary results in the first section, in Section 2 we introduce the
convolution operators and obtain the ergodic theorems for their actions on
a compact quantum group M. Section 3 contains a discussion of the exten-
sions to the case of Haagerup Lp-spaces associated with the Haar state on
M and in Section 4 we signal possible directions of further investigations.

1. Notations and preliminary results

The symbol ⊗ will denote the spatial tensor product of C∗-algebras, ⊗ the
ultraweak tensor product of von Neumann algebras (and relevant extension
of the algebraic tensor product of normal maps); � will be reserved for the
purely algebraic tensor product.

Compact quantum groups. The notion of compact quantum groups has
been introduced in [Wor1]. Here we adopt the definition from [Wor2]:

Definition 1.1. A compact quantum group is a pair (A,∆), where A is a
unital C∗-algebra, ∆ : A→ A⊗A is a unital, *-homomorphic map which is
coassociative:

(∆⊗ idA)∆ = (idA ⊗∆)∆

and A satisfies the quantum cancellation properties:

Lin((1⊗ A)∆(A)) = Lin((A⊗ 1)∆(A)) = A⊗ A.

One of the most important features of compact quantum groups is the
existence of the dense ∗-subalgebra A (the algebra of matrix coefficients of
irreducible unitary representations of A), which is in fact a Hopf ∗-algebra
- so for example ∆ : A → A�A. As explained in the introduction, for us
it is more convenient to work in the von Neumann algebraic context.

Definition 1.2. A von Neumann algebraic (vNa) compact quantum group
is a pair (M,∆), where M is a von Neumann algebra, ∆ : M → M⊗M is a
normal unital, *-homomorphic map which is coassociative:

(∆⊗idA)∆ = (idA⊗∆)∆

and there exists a faithful normal state h ∈ M∗ (called a Haar state) such
that for all x ∈M

(h⊗idM) ◦∆(x) = (idM⊗h) ◦∆(x) = h(x)1.

The next lemma and the comments below it should help to understand
the connection between these two types of objects.

Proposition 1.3. ([Wor2]) Let A be a compact quantum group. There exists
a unique state h ∈ A∗ (called the Haar state of A) such that for all a ∈ A

(h⊗ idA) ◦∆(a) = (idA ⊗ h) ◦∆(a) = h(a)1.
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A compact quantum group is said to be in reduced form if the Haar state
h is faithful. If it is not the case we can always quotient out the null space
of h ({a ∈ A : h(a∗a) = 0}). This procedure in particular does not influence
the underlying Hopf ∗-algebra A; in fact the reduced object may be viewed
as the natural completion of A in the GNS representation with respect to
h (as opposed for example to the universal completion of A, for details
see [BMT]). We will therefore always assume that our compact quantum
groups are in reduced forms.

Let A be a compact quantum group and let (πh,H) be the (faithful) GNS
representation with respect to the Haar state of A. Define M = πh(A)′′.
Then M is a von Neumann algebra, the coproduct has a normal extension
to M (denoted further by the same symbol) with values in M⊗M and by
the construction the Haar state retains its invariance properties in this new
framework - we obtain the vNa compact quantum group. Conversely, given
a vNa compact quantum group there is a way of associating to it a C∗-
algebraic objext, which is a compact quantum group (see [KuV1−2] for the
details of this construction and the statements which follow). As applying
these constructions twice yields the same (i.e. isomorphic) object as the
original one, we can without the loss of generality assume that whenever
a vNa compact quantum group (M,∆) is considered, it is in its standard
form given by a GNS representation with respect to the Haar state and that
it has a w∗-dense unital C∗-subalgebra A such that (A,∆|A) is a compact
quantum group.

Whenever (M,∆) is a vNa compact quantum group, there exists a ∗-
antiauto-morphism of M (called the unitary antipode and denoted by R) and
a σ-strongly∗ continuous one parameter group τ of ∗-automorphisms of M
(called a scaling group of (M,∆)) such that the set Lin{(idM⊗h) (∆(x)(1⊗ y)) :
x, y ∈ M} is contained in the domain of a (densely defined) operator
S = Rτ− 1

2
, called the antipode. In fact the above set is a σ-strong∗ core

for S and

S ((idM⊗h) (∆(x)(1⊗ y))) = (idM⊗h) ((1⊗ x)∆(y)) x, y ∈ M.

The unimodularity of compact quantum groups is expressed by the condi-
tion h = h◦R - in general the unitary antipode exchanges the left invariant
and the right invariant weights. Therefore we also have (by the strong left
invariance of the antipode)

S ((h⊗idM) (∆(x)(1⊗ y))) = (h⊗idM) ((1⊗ x)∆(y)) x, y ∈ M.

Additionally denote by T the algebra of all analytic elements with respect
to the modular group ([Tak]).

The coassociativity of ∆ implies that the predual of M equipped with the
convolution product

φ ? ψ = (φ⊗ψ)∆, φ, ψ ∈ M∗

is a Banach algebra. It contains an important dense subalgebra that may
be equipped with the involution relevant for considering noncommutative
counterparts of symmetric measures. Define, following [KV1],

M#
∗ = {ω ∈ M∗ : ∃θ∈M∗ θ(x) = ω(S(x)) for all x ∈ D(S)}.
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The involution ∗ in M#
∗ is introduced with the help of the obvious formula:

ω∗ ⊃ ω ◦ S.
The modular group of the Haar state will be denoted simply by σ. Let

us gather here a few useful commutation relations:

(1.1) (τt ⊗ σt)∆ = (σt ⊗ τ−t)∆ = ∆ ◦ σt,

(1.2) (τt ⊗ τt)∆ = ∆ ◦ τt,

(1.3) R ◦ τt = τt ◦R.

Notions of ‘pointwise’ convergence in the von Neumann algebraic
context. Let M be a von Neumann algebra with a faithful normal state
φ ∈ M∗, called the reference state.

Definition 1.4. A sequence (xn)∞n=1 of operators of M is almost uniformly
(a.u.) convergent to x ∈ M if for each ε > 0 there exists e ∈ PM such that
φ(e⊥) < ε and

‖(xn − x)e‖∞
n−→∞−→ 0.

A sequence (xn)∞n=1 of operators in M is bilaterally almost uniformly (b.a.u.)
convergent to x ∈ M if for each ε > 0 there exists e ∈ PM such that φ(e⊥) < ε
and

‖e(xn − x)e‖∞
n−→∞−→ 0.

Definition 1.5. A linear map T : M → M is called a kernel (or a positive
L1 − L∞ contraction) if it is a positive contraction:

∀x∈M 0 ≤ x ≤ I =⇒ 0 ≤ T (x) ≤ I

and has the property

∀x∈M, x≥0 φ(T (x)) ≤ φ(x).

It is well known that for each kernel T and x ∈ M the sequence (Mn(T )(x))∞n=1,
where

(1.4) Mn(T )(x) =
1

n

n∑
k=1

T k(x),

is w∗-convergent to F (x), where F : M → M denotes the w∗-continuous
projection on the space of fixed points of T .

The following individual ergodic theorem is due to B. Kümmerer :

Theorem 1.6 ([Küm]). If T : M→ M is a kernel, then for each x ∈ M the
sequence (Mn(T )(x))∞n=1 converges to F (x) almost uniformly.

2. Convolution operators and ergodic theorems on the level
of a von Neumann algebra

Let (M,∆) be a vNa compact quantum group with the Haar state h ∈ M∗.
For any φ ∈ M∗ by the convolution operator associated with φ we shall
understand the map Tφ : M→ M defined by

(2.1) Tφ = (idM⊗φ)∆.

There is also an obvious left version, given by

(2.2) Lφ = (φ⊗idM)∆.
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The basic properties of the convolution operators are summarised below:

Proposition 2.1. Let φ, φi ∈ M∗(i ∈ I). Then the following hold:

(i) if φ ∈ M+
∗ then Tφ is completely positive; if φ(1) = 1 then Tφ is

unital;
(ii) Tφ is normal and decomposable (the latter means it can be repre-

sented as a linear combination of completely positive maps);
(iii) the map φ −→ Tφ is a contractive homomorphism between Banach

algebras M∗ and B(M);
(iv) h ◦ Tφ = φ(1)h;

(v) if φi
i∈I−→ φ in norm then Tφi

i∈I−→ Tφ in norm;

(vi) if φi
i∈I−→ φ weakly then for each x ∈ M Tφi

(x)
i∈I−→ Tφ(x) in w∗-

topology.

Proof. Property (i) is obvious (as positive functionals are automatically
CP), (ii) follows from (i) and the existence of Jordan decomposition of
normal functionals. Property (iii) is a consequence of coassociativity, con-
tractivity of ∆ and the fact that for each linear functional the completely
bounded norm is equal to the standard norm. (iv) follows from the invari-
ance of the Haar state, (v) is a consequence of (iii) and (vi) is implied by
the formula

ψ(Tφ(x)) = φ(Lψ(x)),

valid for all x ∈ M, ψ ∈ M∗. �

All the above properties have their counterparts for the left convolution
operators (this time the map φ→ Lφ is an antihomomorphism).

For φ ∈ M+
∗ we define (for each n ∈ N)

(2.3) φn =
1

n

n∑
k=1

φ?k.

Properties above in conjunction with Theorem 1.6 imply the following
fact (the notation as in the previous subsection); the reference state on M
will always be the Haar state.

Theorem 2.2. For any φ ∈ M+
∗ and x ∈ M

Mn(Tφ)(x) = Tφn(x)
n→∞−→ F (x)

almost uniformly.

Properties of compact quantum groups allow us in fact to identify (in
most of the cases) the limit in the above theorem. First let us mention the
following result due to V. Runde (Corollary 3.5 in [Run]).

Theorem 2.3. The Banach algebra M∗ is an ideal in M∗ (equipped with the
Arens multiplication).

It is elementary to check that if φ ∈ M∗, ρ ∈ M∗ the Arens multiplication
· (both left and right version, known to coincide in this situation) may be
written in terms of convolution operators:

ρ · φ = ρ ◦ Tφ, φ · ρ = ρ ◦ Lφ.
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Therefore the above theorem of Runde may be interpreted as the counter-
part of the classical fact that for compact groups a convolution of a bounded
measure that has a density with any bounded measure gives again a mea-
sure with a density. In two propositions below we identify the ‘pointwise’
limits whose existence was guaranteed by theorem 2.2.

Proposition 2.4. Let φ ∈ M+
∗ be a faithful state. The fixed point space of

Tφ consists only of scalar multiples of 1 (in other words, Tφ is ergodic).

Proof. Consider the restriction of φ to the w∗-dense compact quantum group
A. As the restriction is also a faithful state, a remark ending Section 2 of
[Wor2] implies that for each a ∈ A there is φn(a)

n→∞−→ h(a). It follows
(see the proof of Proposition 2.1(iii)) that for each a ∈ A the sequence
(Mn(Tφ)(a))∞n=1 converges to Th(a) = h(a)1 in w∗-topology. Let now ρ ∈ M∗

be any w∗-accumulation point of the sequence (φn)∞n=1 in the unit ball of
M∗. It is easy to check that (for each x ∈ M)

ρ(x) = ρ(Tφ(x)) = ρ(Lφ(x)).

Theorem 2.3 yields normality of ρ, and as the first part of the proof shows
that ρ|A = h and A is dense, we must have ρ = h. Therefore the projection
on the fixed point space is given by the formula F (x) = h(x)1 (x ∈ M). �

Note that in fact we did not need the theorem of Runde; it was enough
to conclude by recalling the w∗-continuity of F . The next corollary however
makes essential use of Theorem 2.3.

Proposition 2.5. Let φ ∈ M+
∗ . The sequence (φn)∞n=1 is weakly convergent

to a normal functional ρ. In particular, for each x ∈ M

Mn(Tφ)(x)
n→∞−→ Tρ(x)

almost uniformly.

Proof. We can assume that φ is a state. Choosing this time two, potentially
different, accumulation points ρ1, ρ2 of the sequence (φn)∞n=1 in the unit ball
of M∗ we deduce as above that both ρ1, ρ2 are normal. Theorem 1.6 and
Properties 2.1 imply that in fact Tρ1 = F = Tρ2 . Further the cancellation
properties of A yield the implication

Tρ1 = Tρ2 =⇒ ρ1|A = ρ2|A,
and density of A in M gives the equality ρ1 = ρ2. �

3. Extensions to Lp-spaces and iterates of symmetric
convolution operators

This section will only briefly introduce bits of notation and terminology -
for precise treatment of Haagerup Lp-spaces we refer for example to [JX2].
The ‘density’ operator of the Haar state will be denoted by D, the canonical
trace-like functional on L1(M) by τ , p′ will always be the exponent conjugate
to p. For each φ ∈ M∗ the operator defined by

T
(p)
φ (D

1
2pxD

1
2p ) = D

1
2pTφ(x)D

1
2p , x ∈ M,

extends uniquely to a continuous operator on Lp(M). This follows from the
fact that each Tφ may be written (in a canonical way) as a linear combination

6



of four kernels and the results of [JX2]. One of the main theorems of the
latter paper assert the almost sure convergence of ergodic averages in Lp-
spaces. Recall first the definition, due to R.Jajte.

Definition 3.1. Let p ∈ [1,∞), xn, x ∈ Lp(M), n ∈ N. The sequence
(xn)∞n=1 is said to converge almost surely (a.s.) to x if for each ε > 0 there
exists a projection e ∈ M and a family (an,k)

∞
n,k=1 of operators in M such

that

φ(e⊥) < ε, xn − x =
∞∑
k=1

an,kD
1
p , lim

n→∞
‖
∞∑
k=1

an,ke‖ = 0.

Analogously the sequence (xn)∞n=1 is said to converge bilaterally almost
surely (b.a.s.) to x if for each ε > 0 there exists a projection e ∈ M and a
family (an,k)

∞
n,k=1 of operators in M such that

φ(e⊥) < ε, xn − x =
∞∑
k=1

D
1
2pan,kD

1
2p , lim

n→∞
‖
∞∑
k=1

ean,ke‖ = 0.

Note the following fact, which can be easily deduced from the described
in the introduction properties of the modular action (see formula (1.1)):

Proposition 3.2. Let φ ∈ M∗. The operator Tφ commutes with the modular
action of the Haar state if and only if φ ◦ τt = φ for each t ∈ R.

The set of all normal states satisfying the equivalent conditions formu-
lated above will be denoted by Mτ

∗. It is easy to check that it is closed
under convolution multiplication of M∗. Moreover the set Mτ

∗ ∩ M#
∗ is a

∗-subsemigroup of M#
∗ . The latter follows from the commutation relations

(1.2)-(1.3).
Corollary 7.12 of [JX2] yields therefore the following theorem:

Theorem 3.3. Let φ ∈ Mτ
∗ be a state, x ∈ Lp(M). The sequence (Mn(T

(p)
φ )(x))∞n=1

is b.a.s. (and even a.s. for p > 2) convergent to F (p)(x), where F (p) :

Lp(M) → Lp(M) denotes the projection on the fixed points of T
(p)
φ . If φ is

faithful, F (p)(x) = τ(D
1
p′ x)D

1
p .

Classical Stein Theorem ([Ste]) and its noncommutative generalisation
([JX2]) allow to deduce the convergence of the iterates (as opposed to aver-
ages) of Tφ if it induces a symmetric operator on the L2-space. The states
whose associated convolution operators satisfy this property correspond to
‘symmetric’ measures and can be characterised by an invariance property
with respect to the antipode. This is the context of the next proposition.

Proposition 3.4. Let ω ∈ M#
∗ ∩Mτ

∗. Then
(
T

(2)
ω

)∗
= T

(2)
ω∗ .

Proof. Assume that ω is as above and a, b ∈ T . Note that Proposition 3.2
implies in particular that Tω(a) ∈ T . Moreover〈
T (2)
ω (D

1
4aD

1
4 ), D

1
4 bD

1
4

〉
= τ

(
D

1
4 (Tω(a))∗D

1
4D

1
4 bD

1
4

)
= τ

(
σ i

2
(Tω(a)∗)bD

)
=

= h
(
σ i

2
(Tω(a)∗)b

)
= h

(
σ i

2
((idM⊗ω)∆(a∗)) b

)
=

= h
(

(idM⊗ω)∆(σ i
2
(a∗))b

)
= ω

(
(h⊗idM)∆(σ i

2
(a∗))(b⊗ 1)

)
=
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= ω ◦ S
(

(h⊗idM)(σ i
2
(a∗)⊗ 1)∆(b)

)
= ω∗

(
(h⊗idM)(σ i

2
(a∗)⊗ 1)∆(b)

)
=

= (h
(
σ i

2
(a∗)(idM⊗ω∗)∆b

)
= τ

(
σ i

2
(a∗)Tω∗(b)D

)
=

= τ
(
D

1
2a∗D

1
2 (Tω∗(b)

)
=
〈
D

1
4aD

1
4 , T

(2)
ω∗ (D

1
4 bD

1
4 )
〉
.

The claim follows now from the density of T in M. �

Therefore the Stein Theorem in our context implies the following result:

Theorem 3.5. Let φ ∈ M#
∗ ∩Mτ

∗ be a state, φ = φ∗. For p ∈ (1,∞) and

x ∈ Lp(M) the sequence ((T
(p)
φ )2n(x))∞n=1 is b.a.s. (and even a.s. for p > 2)

convergent to F (p)(x), where F (p) : Lp(M) → Lp(M) denotes the projection

on the fixed points of (T
(p)
φ )2. If x ∈ M then the sequence ((Tφ)2n(x))∞n=1

converges almost uniformly.

Continuous semigroups. The theorems stated above, exactly as in [JX2],
have their multi-parameter versions and counterparts for continuous semi-
groups. We mention for example the following (F denotes this time a pro-
jection on the space of fixed points of the semigroup in question):

Theorem 3.6. Let (φt)t>0 be a (weakly continuous) convolution semigroup
of normal states on M. Then for each x ∈ M

Mt(x) =
1

t

∫ t

0

Tφs(x) ds
t→∞−→ F (x)

almost uniformly. If φt ∈ Mτ
∗ for all t ≥ 0 then for every p ∈ [1,∞),

x ∈ Lp(M)

M
(p)
t (x) =

1

t

∫ t

0

T
(p)
φs

(x) ds
t→∞−→ F (p)(x)

bilaterally almost surely (and a.s. if p > 2). If additionally φt ∈ M#
∗ ∩Mτ

∗,
φt = φ∗t (t ≥ 0) then for every p ∈ (1,∞), x ∈ Lp(M)

T
(p)
φt

(x)
t→∞−→ F (p)(x)

bilaterally almost surely (and a.s. if p > 2).

4. Questions and comments

The first natural question to consider is the following: what are the limit
properties of the sequence (T nφ = Tφ?n)∞n=1 if no assumption is made on
symmetry properties of φ? In the classical case the general answer to this
problem is given by Itô-Kawada theorem. Suppose that G is a subgroup
generated of the support of the measure in question. Then the limit exists
if and only if the afore-mentioned support is not contained in a nonzero
coset of any closed normal subgroup of G (as otherwise a ‘periodicity effect’
arises), and is the Haar measure on G (see for example [Gre]). Commutative
proofs suggest that the way to obtain results of such type probably leads
through the Fourier analysis, which is available also for compact quantum
groups. The quantum answer is however clearly more complicated, as the
example of A. Pal ([Pal]) shows the existence of atypical idempotent states
(i.e. idempotent states which are not Haar measures on a quantum sub-
group) on a Kac-Paljutkin quantum group. For more examples of this type
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and characterisation of atypical states on various types of compact quantum
groups we refer to the forthcoming paper [FrS].

The second question concerns the ergodic properties of the convolution
operators on locally compact (but noncompact) quantum groups. One dif-
ference lies in the fact that one has to deal with the left and right invariant
weights (and not states), which in general will not be equal. If discrete quan-
tum groups are considered, the invariant weights are strictly normal (that
is, arise as sums of normal states with orthogonal supports), as M is a di-
rect sum of matrix algebras. There is however no reason to expect that the
convolution operators would respect the underlying decomposition; their
behaviour is governed by the fusion rules for unitary (co)representations.
Satisfactory general results seem to be currently out of reach, and in all
probability even the consideration of concrete examples (such as say convo-
lution operators on the quantum deformation of the Lorentz group) should
involve the extensive use of the von Neumann algebraic techniques and ex-
ploit certain compatibility between the modular theory of the Haar weights
and the behaviour of the convolution operator in question. We hope that
the introductory results of this note may provide motivation and framework
for further investigations of such type.
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