Tauberian properties for monomial asymptotic expansions

1

CINN/FRSID

Pisa, 16th February 2017

Sergio A. Carrillo. Joint work with Jorge Mozo-Fernández (UVa).

> Escuela de Ciencias Exactas e Ingeniería Universidad Sergio Arboleda, Colombia

Asymptotic Analysis and Borel summability in one variable 2014

We have at our disposal a powerful summability theory useful in the study of solutions of analytic differential equations at singular points, solutions of difference equations, conjugacy of diffeomorphisms, singular perturbation problems among others.

Asymptotic Analysis and Borel summability in one variable ²

We have at our disposal a powerful summability theory useful in the study of solutions of analytic differential equations at singular points, solutions of difference equations, conjugacy of diffeomorphisms, singular perturbation problems among others.

- \triangleright Asymptotic expansions, Gevrey asymptotic expansions, k–summability.
- \triangleright Borel and Laplace transformations. Tauberian theorems.
- \blacktriangleright Ecalle's accelerator operators, Multisummability.

Monomial summability

3

SERGIO ARBOLEDA

The concept of summability w.r.t. a monomial was introduced and then generalized in the papers:

► Canalis-Durand M., Mozo-Fernández J., Schäfke R.: Monomial summability and doubly singular differential equations. J. Differential Equations, vol. 233, (2007) 485-511.,

4

 \triangleright Mozo-Fernádez J., Schäfke R.: Asymptotic expansions and summability with respect to an analytic germ. 2017. Available at arxiv.org/pdf/1610.01916v2.pdf

in order to study the formal solutions of the doubly singular equation

$$
\varepsilon^q x^{p+1} \frac{dy}{dx} = F(x, \varepsilon, \mathbf{y}).
$$

The method combines the variables x and ε in the new one $t = x^p \varepsilon^q$, corresponding to the source of divergence of the solutions.

Formal setting **5** and 5 and 5

Formal setting ⁵

Let $\boldsymbol{x} = (x_1, \dots, x_d)$ be coordinates of $\mathbb{C}^d.$ We will work with formal power series in $\mathbb{C}[[x]].$

We will restrict our attention to series $\widehat{f} = \sum_{n=0}^{\infty} f_{n,j} x_j^n$ such that all $f_{n,j}$ have a common polyradius of convergence and are bounded for all $j = 1, \ldots, d$. Let C be the space of such series.

Given a monomial $x^{\alpha} = x_1^{\alpha_1} \cdots x_d^{\alpha_d}$, $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_{>0}^d$ and $\hat{f} \in \mathcal{C}$ we can write it uniquely as

6

UNIVERSIT

$$
\hat{f}(\boldsymbol{x}) = \sum_{n=0}^{\infty} f_n(\boldsymbol{x}) \boldsymbol{x}^{n\boldsymbol{\alpha}},
$$

where each $f_n \in \mathcal{E}^{\alpha}_r$ (an adequate space of analytic functions, $r > 0$).

Given a monomial $x^{\alpha} = x_1^{\alpha_1} \cdots x_d^{\alpha_d}$, $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_{>0}^d$ and $\hat{f} \in \mathcal{C}$ we can write it uniquely as

6

$$
\hat{f}(\boldsymbol{x}) = \sum_{n=0}^{\infty} f_n(\boldsymbol{x}) \boldsymbol{x}^{n\boldsymbol{\alpha}},
$$

where each $f_n \in \mathcal{E}^{\alpha}_r$ (an adequate space of analytic functions, $r > 0$).

More precisely, $g \in \mathcal{E}^{\alpha}_r$ if it is analytic at the polydisk at the origin with radius r and $\frac{\partial^{|\boldsymbol{\beta}|}}{\partial x^{\boldsymbol{\beta}}}(g)(\boldsymbol{0})=0$ for $\beta_j\geq\alpha_j$, $j=1,\ldots,d.$

Gevrey series in a monomial **7** and 7 and 7

We may consider the linear map

$$
\hat{T}_{\alpha} : \mathcal{C} \longrightarrow \left(\bigcup_{r>0} \mathcal{E}_r^{\alpha}\right) [[t]],
$$

$$
\hat{f} \longmapsto \sum_{n=0}^{\infty} f_n t^n.
$$

Gevrey series in a monomial ⁷

We may consider the linear map

$$
\hat{T}_{\alpha} : \mathcal{C} \longrightarrow \left(\bigcup_{r>0} \mathcal{E}_r^{\alpha}\right) [[t]],
$$

$$
\hat{f} \longmapsto \sum_{n=0}^{\infty} f_n t^n.
$$

Let $\mathbb{C}[[x]]_s^{\alpha}$ be the set of $s-$ Gevrey series in the monomial α , i.e. series \hat{f} such that for some $r > 0$, $\hat{T}_{\alpha}(\hat{f}) \in \mathcal{E}_r^{\alpha}[[t]]$ and it is a $s-$ Gevrey series in t .

Lemma

The series $\sum a_{\beta}x^{\beta}$ is $s-$ Gevrey in the monomial x^{α} if and only if there are constants $C, A > 0$ satisfying

8

UNIVERSIDAD
SERGIO ARBOLED

$$
|a_{\beta}| \leq C A^{|\beta|} \min \left\{ \beta_1!^{s/\alpha_1}, \dots, \beta_d!^{s/\alpha_d} \right\}, \ \ \beta = (\beta_1, \dots, \beta_d) \in \mathbb{N}^d.
$$

Lemma

The series $\sum a_{\beta}x^{\beta}$ is $s-$ Gevrey in the monomial x^{α} if and only if there are constants $C, A > 0$ satisfying

8

CINNERSI

$$
|a_{\beta}| \leq C A^{|\beta|} \min \left\{ \beta_1!^{s/\alpha_1}, \dots, \beta_d!^{s/\alpha_d} \right\}, \ \ \beta = (\beta_1, \dots, \beta_d) \in \mathbb{N}^d.
$$

Corollary If $\hat{f} \in \mathbb{C}[[x]]_s^{\alpha'}$ then $\hat{T}_\alpha(\hat{f})$ is a $\max_{1 \leq j \leq d} \{ \alpha_j/\alpha'_j \}$ s—Gevrey series in some \mathcal{E}_r^α .

Analytic setting **9.1 The Second Contract of the Second Contr**

A sectors in the monomial x^{α} is a set defined as

$$
\Pi_{\alpha}(a,b,r) = S_{\alpha}(d,b-a,r)
$$

= $\left\{ x \in \mathbb{C}^d \mid a < \arg(x^{\alpha}) < b, \ 0 < |x_j|^{\alpha_j} < r, j = 1,\ldots,d \right\},\$

where $a, b \in \mathbb{R}$ with $a < b$ and $r > 0$. The number r is called the radius, $b - a$ the opening and $d = (b + a)/2$ the bisecting direction of the sector, respectively.

Analytic setting **9.1 The Second Contract of the Second Contr**

A sectors in the monomial x^{α} is a set defined as

$$
\Pi_{\alpha}(a,b,r) = S_{\alpha}(d,b-a,r)
$$

= $\left\{ x \in \mathbb{C}^d \mid a < \arg(x^{\alpha}) < b, \ 0 < |x_j|^{\alpha_j} < r, j = 1,\ldots,d \right\},\$

where $a, b \in \mathbb{R}$ with $a < b$ and $r > 0$. The number r is called the radius, $b - a$ the opening and $d = (b + a)/2$ the bisecting direction of the sector, respectively.

If
$$
x \in \Pi_{\alpha}(a, b, r)
$$
 then $t = x^{\alpha} \in V(a, b, r^d) := \{ z \in \mathbb{C} \mid 0 < |z| < r^d, \ a < \arg(z) < b \}.$

Given a bounded function $f \in \mathcal{O}(\Pi_{\alpha}(a, b, r))$, as in the formal case it is possible to construct an analytic map

$$
T_{\alpha}(f)_{\rho}: V(a,b,\rho^d) \longrightarrow \mathcal{E}_{\rho}^{\alpha},
$$

 10

UNIVERSIDA

for all $\rho < r$, satisfying

$$
T_{\alpha}(f)_{\rho}(\boldsymbol{x}^{\boldsymbol{\alpha}})(\boldsymbol{x}) = f(\boldsymbol{x}).
$$

In fact, f is completely determined by the map $T_{\alpha}(f)_{\rho}$.

Asymptotic expansions in a monomial

Definition

Let $f\in \mathcal O(\Pi_{\bm \alpha})$, $\Pi_{\bm \alpha}=\Pi_{\bm \alpha}(a,b,r)$ and $\hat f\in \mathcal C$ with $\hat T_{\bm \alpha}\hat f=\sum f_nt^n\in \mathcal E_{r'}^\alpha[[t]]$ for some $0 < r' < r$.

We say that f *has* \hat{f} *as asymptotic expansion in* x^α *on* Π_α $(f\sim^\alpha \hat{f}$ on $\Pi_\alpha)$ if for every subsector Π_{α} and $N \in \mathbb{N}$ there is a constant $C_N > 0$ such that:

$$
\left|f(\boldsymbol{x}) - \sum_{n=0}^{N-1} f_n(\boldsymbol{x}) \boldsymbol{x}^{n\boldsymbol{\alpha}}\right| \leq C_N |\boldsymbol{x}^{N\boldsymbol{\alpha}}|, \quad \boldsymbol{x} \in \widetilde{\Pi}_{\boldsymbol{\alpha}}.\tag{1}
$$

Asymptotic expansions in a monomial

Definition

Let $f\in \mathcal O(\Pi_{\bm \alpha})$, $\Pi_{\bm \alpha}=\Pi_{\bm \alpha}(a,b,r)$ and $\hat f\in \mathcal C$ with $\hat T_{\bm \alpha}\hat f=\sum f_nt^n\in \mathcal E_{r'}^\alpha[[t]]$ for some $0 < r' < r$.

We say that f *has* \hat{f} *as asymptotic expansion in* x^α *on* Π_α $(f\sim^\alpha \hat{f}$ on $\Pi_\alpha)$ if for every subsector Π_{α} and $N \in \mathbb{N}$ there is a constant $C_N > 0$ such that:

$$
\left|f(\boldsymbol{x}) - \sum_{n=0}^{N-1} f_n(\boldsymbol{x}) \boldsymbol{x}^{n\boldsymbol{\alpha}}\right| \leq C_N |\boldsymbol{x}^{N\boldsymbol{\alpha}}|, \quad \boldsymbol{x} \in \widetilde{\Pi}_{\boldsymbol{\alpha}}.\tag{1}
$$

The asymptotic expansion is said to be of $s-$ Gevrey type $(f\sim_s^{\bm{\alpha}}\hat{f}$ on $\Pi_{\bm{\alpha}})$ if it is possible to choose $C_N = C A^N N!^s$ for some C,A independent of $N.$ In this case $\hat{f} \in \mathbb{C}[[x]]_s^{\boldsymbol{\alpha}}$.

A characterization by passing to one variable

Proposition

Let $f \in \mathcal{O}(\Pi_{\alpha})$ be an analytic function $(\Pi_{\alpha} = \Pi_{\alpha}(a, b, r))$, $\hat{f} \in \mathcal{C}$ and $0 < r' \leq r$ such that $\hat T_{\bm\alpha} \hat f \in \mathcal E_{r'}^\bm\alpha[[t]]$. The following statements are equivalent:

- $1.$ $f\sim^\alpha \hat{f}$ on Π_α ,
- 2. For every $0 < \rho < r'$, $T_{\boldsymbol{\alpha}}(f)_{\rho} \sim \hat{T}_{\boldsymbol{\alpha}}(\hat{f})$ on $V(a, b, \rho^d)$.

The same result is valid for asymptotic expansions of s–Gevrey type.

A characterization by passing to one variable

Proposition

Let $f \in \mathcal{O}(\Pi_{\alpha})$ be an analytic function $(\Pi_{\alpha} = \Pi_{\alpha}(a, b, r))$, $\hat{f} \in \mathcal{C}$ and $0 < r' \leq r$ such that $\hat T_{\bm\alpha} \hat f \in \mathcal E_{r'}^\bm\alpha[[t]]$. The following statements are equivalent: $1.$ $f\sim^\alpha \hat{f}$ on Π_α ,

2. For every $0 < \rho < r'$, $T_{\boldsymbol{\alpha}}(f)_{\rho} \sim \hat{T}_{\boldsymbol{\alpha}}(\hat{f})$ on $V(a, b, \rho^d)$.

The same result is valid for asymptotic expansions of s–Gevrey type.

This asymptotics behave well under usual algebraic operations and differentiation. In particular, if $f\sim^\alpha \hat{f}=\sum a_\beta x^\beta$ on $\Pi_{\bm{\alpha}}$ then

$$
a_{\beta} = \lim_{\substack{x \to 0 \\ x \in \Pi_{\alpha}'}} \frac{1}{\beta!} \frac{\partial^{\beta} f}{\partial x^{\beta}}(x).
$$

Monomial summability

Definition

Let $k > 0$ and $\hat{f} \in \mathcal{C}$ be given. We say that \hat{f} is k–summable in the monomial $x^{\boldsymbol{\alpha}}$ in the direction d if there is a sector $\Pi_{\boldsymbol{\alpha}}(a,b,r)$ bisected by d with opening $b-a>\pi/k$ and $f\in\mathcal O(\Pi_{\bm\alpha}(a,b,r))$ with $f\sim_{1/k}^{\bm\alpha} \hat f$ on $\Pi_{\bm\alpha}(a,b,r).$

We simply say that \hat{f} is $k{-}$ summable in the monomial $x^{\boldsymbol{\alpha}}$ if it is $k{-}$ summable in the monomial x^{α} in every direction d , with finitely many exceptions mod. 2π .

- ► $\mathbb{C}\{x\}_{1/k, d}^{\alpha}$: k–summable series in x^{α} in the direction d ,
- ► $\mathbb{C}\{x\}_{1/k}^{\alpha}$: $k-$ summable series in x^{α} .

Monomial Borel transform with weights

Definition

The $k-$ Borel transform w.r.t. $\boldsymbol{x^{\alpha}}$ and a weight $\boldsymbol{s} \in \sigma_d$, of a map f is defined by the formula

$$
\mathcal{B}_{\boldsymbol{\lambda}}(f)(\boldsymbol{\xi}) = \frac{(\boldsymbol{\xi}^{k\alpha})^{-1}}{2\pi i} \int_{\gamma} f\left(\xi_1 u^{-\frac{s_1}{\alpha_1 k}}, \ldots, \xi_d u^{-\frac{s_d}{\alpha_d k}}\right) e^u du,
$$

where $\pmb{\lambda} = \left(\frac{s_1}{\alpha_1k},\ldots,\frac{s_d}{\alpha_dk}\right)$ and γ denotes a Hankel's path. Here and below, $\sigma_d = \{(s_1,\ldots,s_d) \in \mathbb{R}_{>0}^d \mid s_1 + \cdots + s_d = 1\}.$

Monomial Borel transform with weights

Definition

The $k-$ Borel transform w.r.t. $\boldsymbol{x^{\alpha}}$ and a weight $\boldsymbol{s} \in \sigma_d$, of a map f is defined by the formula

$$
\mathcal{B}_{\boldsymbol{\lambda}}(f)(\boldsymbol{\xi}) = \frac{(\boldsymbol{\xi}^{k\alpha})^{-1}}{2\pi i} \int_{\gamma} f\left(\xi_1 u^{-\frac{s_1}{\alpha_1 k}}, \ldots, \xi_d u^{-\frac{s_d}{\alpha_d k}}\right) e^u du,
$$

where $\pmb{\lambda} = \left(\frac{s_1}{\alpha_1k},\ldots,\frac{s_d}{\alpha_dk}\right)$ and γ denotes a Hankel's path. Here and below, $\sigma_d = \{(s_1,\ldots,s_d) \in \mathbb{R}_{>0}^d \mid s_1 + \cdots + s_d = 1\}.$

- \triangleright Balser W.: Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations. Ann. Fac. Sci. Toulouse Math, vol. XIV, n°4 (2005) 593-608.
- ▶ Balser W., Mozo-Fernández J.: Multisummability of Formal Solutions of Singular Perturbation Problems. J. Differential Equations, vol. 183, (2002) 526-545.

The formal $k-$ Borel transform associated to the monomial x^α with weight s is thus defined term-by-term by

․
15

UNIVERSIDA

$$
\hat{\mathcal{B}}_{\lambda}: x^{k\alpha}\mathbb{C}[[x]] \longrightarrow \mathbb{C}[[\xi]]
$$
\n
$$
x^{k\alpha+\beta} \longmapsto \frac{\xi^{\beta}}{\Gamma\left(1 + \frac{\beta_1 s_1}{\alpha_1 k} + \dots + \frac{\beta_d s_d}{\alpha_d k}\right)}.
$$

Monomial Laplace transform with weights

Definition

The $k-$ Laplace transform w.r.t. x^{α} with weight $s \in \sigma_d$ in direction θ , $|\theta| < \pi/2$, of a function f is defined by the formula

$$
\mathcal{L}_{\lambda,\theta}(f)(x)=x^{k\alpha}\int_0^{e^{i\theta}\infty}f\left(x_1u^{\frac{s_1}{\alpha_1k}},\ldots,x_du^{\frac{s_d}{\alpha_dk}}\right)e^{-u}du.
$$

We assume that f has an exponential growth of the form

$$
|f(\xi)| \leq C \exp\left(B \max\{|\xi_1|^{\frac{\alpha_1 k}{s_1}}, \dots, |\xi_d|^{\frac{\alpha_d k}{s_d}}\}\right).
$$
 (2)

Monomial Borel-Laplace summation methods ¹⁷

Definition

Let \hat{f} be a $1/k-$ Gevrey series in $\boldsymbol{x^{\alpha}},\, \boldsymbol{s}\in \sigma_d$ and d a direction. We will say that \hat{f} is $k - s$ —Borel summable in the monomial $\boldsymbol{x}^{\boldsymbol{\alpha}}$ in direction d if:

1. $\hat{\varphi}_s = \hat{\mathcal{B}}_\pmb{\lambda}(x^{k\boldsymbol{\alpha}}\hat{f}), \, \pmb{\lambda} = \left(\frac{s_1}{\alpha_1 k}, \ldots, \frac{s_d}{\alpha_d k}\right)$, can be analytically continued, say as φ_s , to a monomial sector of the form $S_{\alpha}(d, 2\epsilon)$.

2. φ_s has exponential growth as in [\(2\)](#page-24-0).

Monomial Borel-Laplace summation methods ¹⁷

Definition

Let \hat{f} be a $1/k-$ Gevrey series in $\boldsymbol{x^{\alpha}},\, \boldsymbol{s}\in \sigma_d$ and d a direction. We will say that \hat{f} is $k - s$ —Borel summable in the monomial $\boldsymbol{x}^{\boldsymbol{\alpha}}$ in direction d if:

- 1. $\hat{\varphi}_s = \hat{\mathcal{B}}_\pmb{\lambda}(x^{k\boldsymbol{\alpha}}\hat{f}), \, \pmb{\lambda} = \left(\frac{s_1}{\alpha_1 k}, \ldots, \frac{s_d}{\alpha_d k}\right)$, can be analytically continued, say as φ_s , to a monomial sector of the form $S_{\alpha}(d, 2\epsilon)$.
- 2. φ_s has exponential growth as in [\(2\)](#page-24-0).

In this case the $k - s - B$ orel sum of \hat{f} in direction d is defined as

$$
f(\mathbf{x}) = \frac{1}{x^{k\alpha}} \mathcal{L}_{\lambda}(\varphi_s)(\mathbf{x}).
$$

Monomial summability and Borel-Laplace method

Theorem

Let \hat{f} be a $1/k-$ Gevrey series in the monomial $\boldsymbol{x^{\alpha}}$. Then it is equivalent:

- $1.$ $\hat{f}\in \mathbb{C}\{\bm{x}\}^{\bm{\alpha}}_{1/k,d}$, i.e. \hat{f} is $k-$ summable in $\bm{x}^{\bm{\alpha}}$ in direction $d.$
- 2. There is $s \in \sigma_d$ such that \hat{f} is $k-s-$ Borel summable in the monomial $x^{\boldsymbol{\alpha}}$ in direction d.
- 3. For all $s \in \sigma_d$, \hat{f} is $k-s-$ Borel summable in the monomial $x^{\boldsymbol{\alpha}}$ in direction d.

In all cases the corresponding sums coincide.

Monomial summability and blow-ups

Consider the monomial transformations

$$
\pi_{ij}(x_1,\ldots,x_d)=(x_1,\ldots,\underbrace{x_ix_j}_{j \text{ position}},\ldots,x_d),\ \ i,j=1,\ldots,d.
$$

Lemma

- 1. $\hat{f} \in \mathbb{C}\{\bm{x}\}\$ if and only if $\hat{f} \circ \pi_{ij} \in \mathbb{C}\{\bm{x}\}\$ for some $i, j = 1, \ldots, d$.
- 2. $\hat{f} \in \mathbb{C}[[x]]_s^{\bm{\alpha}}$ if and only if there are $i,j=1,...,d$, $i \neq j$ such that $\hat{f} \circ \pi_{ij} \in \mathbb{C}[[x]]^{\boldsymbol{\alpha}+\alpha_j \boldsymbol{e}_i}_{s}$ and $\hat{f} \circ \pi_{ji} \in \mathbb{C}[[x]]^{\boldsymbol{\alpha}+\alpha_i \boldsymbol{e}_j}_{s}.$

Monomial summability and blow-ups ¹⁹

Consider the monomial transformations

$$
\pi_{ij}(x_1,\ldots,x_d)=(x_1,\ldots,\underbrace{x_ix_j}_{j \text{ position}},\ldots,x_d),\ \ i,j=1,\ldots,d.
$$

Lemma

\n- 1.
$$
\hat{f} \in \mathbb{C}\{\mathbf{x}\}
$$
 if and only if $\hat{f} \circ \pi_{ij} \in \mathbb{C}\{\mathbf{x}\}$ for some $i, j = 1, \ldots, d$.
\n- 2. $\hat{f} \in \mathbb{C}[[x]]_s^{\alpha}$ if and only if there are $i, j = 1, \ldots, d, i \neq j$ such that $\hat{f} \circ \pi_{ij} \in \mathbb{C}[[x]]_s^{\alpha + \alpha_i e_i}$ and $\hat{f} \circ \pi_{ji} \in \mathbb{C}[[x]]_s^{\alpha + \alpha_i e_j}$.
\n

Proposition

If $\hat{f}\in \mathbb{C}\{\bm{x}\}^{\bm{\alpha}}_{1/k,d}$ has $k-$ sum f in direction d then $\hat{f}\circ \pi_{ij}\in \mathbb{C}\{\bm{x}\}^{\bm{\alpha}+\alpha_j\bm{e}_i}_{1/k,d}$ and have k–sum f ∘ π_{ij} in direction d, for all $i, j = 1, \ldots, d, i \neq j$.

Tauberian properties for monomial summability $\left\| \right\|$

Proposition

If $\hat{f} \in \mathbb{C}\{\bm{x}\}^{\bm{\alpha}}_{1/k}$ has no singular directions then \hat{f} is convergent.

Tauberian properties for monomial summability

Proposition

If $\hat{f} \in \mathbb{C}\{\bm{x}\}^{\bm{\alpha}}_{1/k}$ has no singular directions then \hat{f} is convergent.

Theorem

Let x^{α} and $x^{\alpha'}$ be two monomials and $k,l>0$. The following statements hold:

- 1. If $\max_{1\leq j\leq d}\{\alpha_j/\alpha'_j\}< 1/k/1/l$ then $\mathbb{C}\{\bm{x}\}^{\bm{\alpha}}_{1/k}\cap\mathbb{C}[[\bm{x}]]^{\bm{\alpha}'}_{1/l}=\mathbb{C}\{\bm{x}\}.$
- 2. $\mathbb{C}\{x\}_{1/k}^{\boldsymbol{\alpha}}\cap\mathbb{C}\{x\}_{1/l}^{\boldsymbol{\alpha}'}=\mathbb{C}\{x\}$, except in the case $\alpha_j/\alpha'_j=l/k$ for all $j=1,\ldots,d$ where $\mathbb{C}\{\bm{x}\}^{\bm{\alpha}}_{1/k} = \mathbb{C}\{\bm{x}\}^{\bm{\alpha}'}_{1/l}.$

S. Carrillo — [Tauberian properties for monomial asymptotic expansions](#page-0-0)

Applications

21

CHANGES CONTRACTOR

Singular linear ODEs

Theorem

Consider the singularly perturbed differential equation

$$
\varepsilon^{\alpha} x^{p+1} \frac{\partial y}{\partial x} = A(x, \varepsilon) y + b(x, \varepsilon),
$$

where $y\in\mathbb{C}^l$, $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_d)$, $\alpha\in\mathbb{N}_{>0}^d$ and A and b are analytic in a neighborhood of $(0, 0)$.

If $A(0, 0)$ is invertible then the previous equation has a unique formal solution \hat{y} . Furthermore it is $1-$ summable in $x^p\varepsilon ^\alpha$.

The induced vector field by the Borel transform $\left|\left|\right|\right|$

Consider the vector field X_{λ} given by

$$
X_{\lambda} = \frac{x^{k\alpha}}{k} \left(\frac{s_1}{\alpha_1} x_1 \frac{\partial}{\partial x_1} + \dots + \frac{s_d}{\alpha_d} x_d \frac{\partial}{\partial x_d} \right).
$$

If $f \in \mathcal{O}_b(S_{\alpha})$ then

$$
\mathcal{B}_{\lambda}(X_{\lambda}(f))(\xi) = \xi^{k\alpha} \mathcal{B}_{\lambda}(f)(\xi).
$$

Monomial summability of a family of PDEs

Consider the problem

$$
\boldsymbol{x}^{\boldsymbol{\alpha}}\left(\frac{s_1}{\alpha_1}x_1\frac{\partial \boldsymbol{y}}{\partial x_1}+\cdots+\frac{s_d}{\alpha_d}x_d\frac{\partial \boldsymbol{y}}{\partial x_d}\right)=C(\boldsymbol{x})\boldsymbol{y}+b(\boldsymbol{x}),
$$

where $\boldsymbol{\alpha}\in\mathbb{N}_{>0}^d$, $(s_1,\ldots,s_d)\in\sigma_d$ and C,b analytic at $\mathbf{0}\in\mathbb{C}^d$.

Theorem

If $C(0)$ is invertible then the previous equation has a unique formal solution \hat{y} and it is 1 -summable in x^{α} .

Pfaffian system with normal crossings

Consider the following the system of PDEs:

$$
\int x_2^q x_1^{p+1} \frac{\partial y}{\partial x_1} = f_1(x_1, x_2, y), \tag{3a}
$$

$$
\left\{\n\begin{array}{l}\nx_1^{p'}x_2^{q'+1}\frac{\partial y}{\partial x_2} = f_2(x_1, x_2, y),\n\end{array}\n\right.
$$
\n(3b)

where $p,q,p',q'\in \mathbb{N}^*,\ \boldsymbol{y}\in \mathbb{C}^l$, and f_1,f_2 are analytic in a neighborhood of $(0, 0, 0)$.

Pfaffian system with normal crossings

Consider the following the system of PDEs:

$$
\int x_2^q x_1^{p+1} \frac{\partial y}{\partial x_1} = f_1(x_1, x_2, y), \tag{3a}
$$

$$
\left\{\n\begin{array}{l}\nx_1^{p'}x_2^{q'+1}\frac{\partial y}{\partial x_2} = f_2(x_1, x_2, y),\n\end{array}\n\right.
$$
\n(3b)

where $p,q,p',q'\in \mathbb{N}^*,\ \boldsymbol{y}\in \mathbb{C}^l$, and f_1,f_2 are analytic in a neighborhood of $(0, 0, 0)$.

It is called *completely integrable* if $f_1(x_1, x_2, \mathbf{0}) = f_2(x_1, x_2, \mathbf{0}) = \mathbf{0}$ and the functions f_1, f_2 satisfy the following identity on their domains of definition:

$$
\frac{\partial}{\partial x_2} \left(\frac{1}{x_1^{p+1} x_2^q} \right) f_1 + \frac{1}{x_1^{p+1} x_2^q} \left(\frac{\partial f_1}{\partial x_2} + \frac{\partial f_1}{\partial y} \frac{f_2}{x_1^{p'} x_2^{q'+1}} \right) =
$$

$$
\frac{\partial}{\partial x_1} \left(\frac{1}{x_1^{p'} x_2^{q'+1}} \right) f_2 + \frac{1}{x_1^{p'} x_2^{q'+1}} \left(\frac{\partial f_2}{\partial x_1} + \frac{\partial f_2}{\partial y} \frac{f_1}{x_1^{p+1} x_2^q} \right).
$$

If the system is completely integrable, $f_1 = Ay + h.o.t.$ and $f_2 = By + h.o.t.$ then A and B satisfy

.
26

UNIVERSIDAD
SERGIO ARBOLED

$$
x_1^{p'}x_2^{q'}\left(x_2\frac{\partial A}{\partial x_2} - qA\right) - x_1^px_2^q\left(x_1\frac{\partial B}{\partial x_1} - p'B\right) + AB - BA = 0.
$$

If the system is completely integrable, $f_1 = Ay + h.o.t$. and $f_2 = By + h.o.t$. then A and B satisfy

26

$$
x_1^{p'}x_2^{q'}\left(x_2\frac{\partial A}{\partial x_2} - qA\right) - x_1^px_2^q\left(x_1\frac{\partial B}{\partial x_1} - p'B\right) + AB - BA = 0.
$$

From this equation we have deduced that:

- 1. If $p' < p$ or $q' < q$ then $A(0,0)$ is nilpotent.
- 2. If $p < p'$ or $q < q'$ then $B(0, 0)$ is nilpotent.
- 3. If $p = p'$ and $q = q'$, for every eigenvalue μ of $B(0,0)$ there is an eigenvalue λ of $A(0,0)$ such that $q\lambda = p\mu$. The number λ is an eigenvalue of $A(0,0)$, when restricted to its invariant subspace $E_{\mu} = \{ v \in \mathbb{C}^n | (B(0,0) - \mu I)^k v = 0 \text{ for some } k \in \mathbb{N} \}.$

Convergence of solutions for different monomials

Theorem (Gérard-Sibuya)

Consider the completely integrable Pffafian system [\(3a\)](#page-36-0), [\(3b\)](#page-36-1), with $q = p' = 0$. If $\frac{\partial f_1}{\partial y}(0,0, \mathbf{0})$ and $\frac{\partial f_2}{\partial y}(0,0, \mathbf{0})$ are invertible then the Pfaffian system admits a unique analytic solution y at the origin such that $y(0, 0) = 0$.

Convergence of solutions for different monomials

Theorem (Gérard-Sibuya)

Consider the completely integrable Pffafian system [\(3a\)](#page-36-0), [\(3b\)](#page-36-1), with $q = p' = 0$. If $\frac{\partial f_1}{\partial y}(0,0, \mathbf{0})$ and $\frac{\partial f_2}{\partial y}(0,0, \mathbf{0})$ are invertible then the Pfaffian system admits a unique analytic solution y at the origin such that $y(0, 0) = 0$.

Theorem

Consider the system [\(3a\)](#page-36-0), [\(3b\)](#page-36-1). Suppose the system has a formal solution \hat{y} . If $\frac{\partial f_1}{\partial y}(0,0,\bm 0)$ and $\frac{\partial f_2}{\partial y}(0,0,\bm 0)$ are invertible and $x_1^px_2^q\neq x_1^{p'}x_2^{q'}$ $\stackrel{q}{_2}$ then $\hat{\bm{y}}$ is convergent.

References and the contract of the contract of

- \triangleright Carrillo, S.A. Monomial multisummability through Borel-Laplace transforms. Applications to singularly perturbed differential equations and Pfaffian systems. PhD Thesis, (2016) Universidad de Valladolid. Available at uvadoc.uva.es/handle/10324/16554.
- ▶ Carrillo, S. A., Mozo-Fernández, J. Tauberian properties for monomial summability with appliactions to Pffafian systems. Journal of Differential Equations 261 (2016) pp. 7237-7255.
- ► Carrillo, S. A., Mozo-Fernández, J. An extension of Borel-Laplace methods and monomial summability. Submitted to publication. Available at arxiv.org/abs/1609.07893.

Thanks for your attention.

 29

ENTRE CONTROLLER