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We start the lecture by introducing integral means over
spheres and balls and derivation of the Pizzetti formu-
las for real analytic functions.
Next we give a characterization of real analytic func-
tions in terms of integral means. The characterization
justi�es introduction of a de�nition of analytic func-
tions on metric measure spaces.
We also apply the Pizzetti formulas to the study of con-
vergence and Borel summability of formal solutions to
the classical heat equation and its some generalizations.
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In the second part we introduce integral mean value
functions which are averages of integral means over
spheres or balls and over their images under the ac-
tion of a discrete group of complex rotations. In the
case of real analytic functions we derive higher order
Pizzetti's formulas. As applications we get:
• a maximum principle for polyharmonic functions;
• a characterization of convergent solutions to the ini-
tial value problem for higher order heat type equations;
• a Dirichlet type problem for polyharmonic functions.
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1. Solid and spherical means value functions

Let Ω be a domain in Rn, u ∈ C0(Ω), x ∈ Ω, 0 < R <
dist(x, ∂Ω). De�ne solid and spherical means

M(u; x,R) =
1

σ(n)Rn

∫
B(x,R)

u(y)dy, (1a)

N(u; x,R) =
1

nσ(n)Rn−1

∫
S(x,R)

u(y)dS(y), (1b)

where σ(n) = |B(0, 1)| = πn/2/Γ(n/2 + 1).
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Lemma 1 Let u ∈ C0(Ω).
Then for any x ∈ Ω and 0 < R < dist(x, ∂Ω)(R

n

∂

∂R
+ 1

)
M(u; x,R) = N(u; x,R). (2a)

If u ∈ C2(Ω), then
n

R

∂

∂R
N(u; x,R) = M(∆u; x,R). (2b)
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2. Mean-value properties for real-analytic functions

Theorem 1 ([9], Mean-value property). Let u ∈ A(Ω),
x ∈ Ω. Then M(u; x,R) and N(u; x,R) are even,
analytic functions at the origin and for small |R|,

M(u; x,R) =
∑∞

k=0

∆ku(x)

4k
(n
2 + 1

)
kk!

R2k, (3a)

N(u; x,R) =
∑∞

k=0

∆ku(x)

4k
(n
2

)
kk!

R2k. (3b)

Here (a)k = a(a+ 1) · · · (a+ k − 1) is the Pochhammer symbol.
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Proof. Assume x = 0. Then for y ∈ B(0, ρ),

u(y) =
∑
ℓ∈Nn

0

1

ℓ1! · · · ℓn!
∂|ℓ|

∂xℓ
u(x)yℓ,

Take R < ρ. Note that if at least one of the exponents
ℓ1, . . . , ℓn is odd, then the integral of

yℓ = y
ℓ1
1 · · · yℓnn

over B(0, R) vanishes.

7



Next for ℓ = 2κ we derive
1

σ(n)Rn

∫
B(0,R)

y
2κ1
1 · · · y2κnn dy

=
R2k

σ(n)

∫
B(0,1)

y
2κ1
1 · · · y2κnn dy

=

(1
2

)
κ1
· · ·

(1
2

)
κn(n

2 + 1
)
k

R2k.
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M(u; x,R) = · · ·

=

∞∑
k=0

R2k

4k
(n
2 + 1

)
kk!

∑
κ∈Nn

0 ,|κ|=k

k!

κ1! · · ·κn!
∂2ku(x)

∂x2κ

=

∞∑
k=0

∆ku(x)

4k
(n
2 + 1

)
kk!

R2k.

Clearly, the series converges for |R| small enough.
Finally, applying (2a) we get (3b). �
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Theorem 2 ([9], Converse to the mean-value property).
Let u ∈ C∞(Ω) and ρ ∈ C(Ω,R+). If

M̃(x,R) =
∑∞

k=0

∆ku(x)

4k
(n
2 + 1

)
kk!

R2k

or Ñ(x,R) =
∑∞

k=0

∆ku(x)

4k
(n
2

)
kk!

R2k

is loc. uni. conv. in {(x,R) : x ∈ Ω, |R| < ρ(x)},
then u ∈ A(Ω), M = M̃ and N = Ñ .

10



Proof. Fix a compact setK b Ω and set ρ = dist(K, ∂Ω).
Then the assumption implies that

∆ku(x)

4k
(n
2

)
kk!

R2k → 0 as k → ∞

uniformly on K ×{|R| ≤ ρ1} with any ρ1 < ρ. So for
any ρ1 < ρ there exists a constant C(ρ1) < ∞ such
that for k ∈ N0

sup
x∈K

|∆ku(x)| ≤ C(ρ1) · 4k
(
n/2

)
kk! ρ

−2k
1 .
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Applying inequalities (a)k ≤
(
max(1, a)

)k
k! for a > 0

and 2kk!k! ≤ (2k)! we see that for any compact set
K b Ω one can �nd C < ∞ and L < ∞ such that for
k ∈ N0

sup
x∈K

|∆ku(x)| ≤ C(2k)!L2k.

But by Komatsu theorem this inequality implies that
u ∈ A(Ω). Finally, by Theorem 1 we get Ñ(x,R) =

N(u; x,R) and M̃(x,R) = M(u; x,R). �
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3. A characterization of real analyticity

Lemma 2 ([11]). Let u ∈ C0(Ω). If there exist func-
tions v2l ∈ C0(Ω) for l ∈ N0 and ρ ∈ C0(Ω,R+) such
that

N(u; x,R) =
∑∞

l=0
v2l(x)R

2l (4)

locally uniformly in {(x,R) : x ∈ Ω, |R| < ρ(x)},
then u ∈ C∞(Ω) and v2l ∈ C∞(Ω) for l ∈ N0.
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Proof. Let η̃(r) be a smooth function on [0,∞) sup-

ported by [0, 1] with nσ(n)
∫ 1
0 η̃(r)rn−1 dr = 1. Then

ηε(y) =
1

εn
η̃

(
|y|
ε

)
is a radially symmetric molli�er supported by B(0, ε).

14



Integrating in the spherical coordinates we get∫
B(0,ε)

ηε(y) dy =

∫ 1

0
nσ(n)η̃(r)rn−1 dr = 1.

Since ηε is radially symmetric we have

∆ηε(y) =
1

εn+2
η̃ ′′

(
|y|
ε

)
+

1

εn+1
n− 1

|y|
η̃ ′
(
|y|
ε

)
:= Lε(η̃)(|y|). (5)
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For x ∈ Ω and 0 < ε < ρ(x) we compute

∆
(
ηε ∗ u

)
(x) =

(
∆ηε

)
∗ u(x) =

∫
B(0,ε)

(
∆ηε

)
(y)u(x− y) dy

=

∫ ε

0

(∫
S(0,1)

(
∆ηε

)
(rz)u(x− rz) dS(z)

)
rn−1 dr

(5)
=

∫ ε

0

∫
S(0,1)

u(x− rz) dS(z)Lε(η̃)(r)r
n−1 dr

=

∫ ε

0

nσ(n)N(u; x, r)Lε(η̃)(r)r
n−1 dr

(4)
=

∞∑
l=0

nσ(n)v2l(x)

∫ ε

0

Lε(η̃)(r)r
2l+n−1 dr
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=

∞∑
l=0

nσ(n)v2l(x) ε
2l−2

∫ 1

0

L1(η̃)(t)t
2l+n−1 dt

=

∞∑
l=0

v2l(x) ε
2l−2 · nσ(n)

∫
B(0,1)

L1(η̃)(|y|)|y|2l dy

=

∞∑
l=1

v2l(x) ε
2l−2

∫
B(0,1)

∆η1(y) y2l dy

since
∫
B(0,1)∆η1(y) dy =

∫
S(0,1)

∂η1

∂n (y) dS(y) = 0.
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So

∆
(
ηε ∗ u

)
(x) =

∞∑
l=0

v2l+2(x) · ε2lm2l+2(∆η1),

where m2l(η
1) =

∫
B(0,1) η

1(y)y2l dy for l ∈ N0.

Similarly for k ∈ N0 we get

∆k(ηε ∗ u)(x) = ∞∑
l=0

v2l+2k(x) · ε2lm2l+2k(∆
kη1).
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Note that ∆k(ηε ∗ u) is distributionally convergent as
ε → 0. Hence

m2k(∆
kη1)v2k = lim

ε→0
∆k(ηε ∗ u)

= ∆k( lim
ε→0

ηε ∗ u
)
= ∆kv0 ∈ D′(Ω).

Since v2k ∈ C(Ω) applying the Weil lemma we con-
clude that u = v0 ∈ C2k(Ω).
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Next for 0 ≤ l ≤ k we have

∆kv0 = ∆k−l(∆lv0) = m2l(∆
lη1) ·∆k−lv2l ∈ C0(Ω).

So v2l ∈ C2k−2l(Ω).
Since k is arbitrary big we conclude that v2l ∈ C∞(Ω)
for l ∈ N0. 2
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Theorem 3 ([11, Theorem 3]). Let u ∈ C0(Ω).
If there exist functions uk ∈ C0(Ω) for k ∈ N0 and
ρ ∈ C0(Ω,R+) such that

M(u; x,R) =

∞∑
k=0

uk(x)R
k,

locally uniformly in {(x,R) : x ∈ Ω, |R| < ρ(x)},
then u is real analytic on Ω and for l ∈ N0,

u2l+1 = 0 and u2l =
(
4l
(n
2 + 1

)
ll!
)−1

·∆lu
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Proof. Since M(u; x,R) is even we get u2l+1 = 0.
Applying the relation between mean value functions M
and N , we get for x ∈ Ω and 0 < R < ρ(x),

N(u; x,R) =
(R
n

∂

∂R
+ 1

)(∑∞

l=0
u2l(x)R

2l
)

=
∑∞

l=0

(2l
n
+ 1

)
u2l(x)R

2l.

Hence the assumptions of Lemma 2 are satis�ed with
v2l =

(2l
n + 1

)
u2l and so u2l ∈ C∞(Ω) for l ∈ N0.

Next we derive that 4l
(n
2 + 1

)
ll!u2l = ∆lu and apply

Theorem 2. 2
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4. Analytic functions on metric measure spaces

It is well known that the mean value characterization
of harmonic functions can be used to de�ne harmonic
functions on metric measure spaces (MMS). Namely,
let (X, ρ, µ) be a metric measure space with a metric
ρ and a Borel regular measure µ which is positive on
open sets and �nite on bounded sets.
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Then a continuous function u : Ω → R on an open
set Ω ⊂ X is said to be harmonic on Ω if for every
x ∈ Ω and any closed ball B(x,R) ⊂ Ω it holds

u(x) =
1

µ(B(x,R))

∫
B(x,R)

u(y) dµ(y).

If the measure is continuous with respect to the met-
ric, then harmonic functions on MMS satisfy maximum
principle, the Harnack type inequality and the Weier-
strass and Montel convergence theorem, see [5].
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Another approach to the theory of harmonic functions
on MMS, based on variational methods, was proposed
by Shanmugalingam [15].
Recently Alabern, Mateu and Verdera obtained in [2] a
characterization of Sobolev spaces on Rn only in terms
of the Euclidean metric and the Lebesgue measure which
allowed them to de�ne higher order Sobolev spaces on
MMS.
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We propose a de�nition of analytic functions on MMS.
De�nition ([11]). Let (X, ρ, µ) be a metric measure

space with a metric ρ and a Borel regular measure µ
which is positive on open sets and �nite on bounded
sets. Let Ω be an open subset of X .
For any x ∈ Ω and 0 < R < dist(x, ∂Ω) de�ne a solid
mean of a continuous function u ∈ C0(Ω) by

MX(u; x,R) =
1

µ(Bρ(x,R))

∫
Bρ(x,R)

u(y) dµ(y).
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De�nition ([11]). Let (X, ρ, µ) be a metric measure
space and Ω be an open subset ofX . Let u ∈ C0(Ω,C).
We say that u is (X, ρ, µ)-analytic on Ω and write u ∈
AX(Ω, ρ, µ) if there exist functions uk ∈ C0(Ω) for
k ∈ N0 and ρ ∈ C0(Ω,R+) such that

MX(u; x,R) =

∞∑
k=0

uk(x)R
k.

locally uniformly in {(x,R) : x ∈ Ω, |R| < ρ(x)}.
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By the Theorem 3 we get

Corollary 1 Let X = Rn with the Euclidean metric ρ
and the Lebesgue measure λ. Let Ω ⊂ X.
Then u ∈ C0(Ω) is (X, ρ, λ)-analytic on Ω if and only
if it is real analytic on Ω.
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De�nition ([11]). The metric measure space (X, ρ, µ)
is called analytizable if for any x ∈ X there exist open
sets U ⊂ Rn, Ω ⊂ X and a homeomorphism
Φ : U →onto Ω such that for y ∈ Ω andR small enough

Φ
(
B(Φ−1(y), R)

)
= Bρ(y,R)

and for Borel sets A ⊂ Ω

µ(A) = |Φ−1(A)|.
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Theorem 4 ([11]). Under the notations of the last def-
inition let u : Ω → C be a continuous function.
Then u is (X, ρ, µ)-analytic on Ω if and only if
u ◦ Φ is real analytic on U = Φ−1(Ω).

Hence if X is locally homeomorphic to Rn, then the
metrical properties of X-analytic functions can be de-
rived from the analogous properties of real analytic
functions.
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5. Functions of Laplacian growth

In order to control the growth of iterated Laplacians of
smooth functions Aronszajn et al. [1] introduced the
notion of the Laplacian growth.
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De�nition ([1]). Let ρ > 0 and τ ≥ 0. A function u
smooth on Ω ⊂ Rn is of Laplacian growth (ρ, τ ) if for
every K b Ω and ε > 0 one can �nd C = C(K, ε) <
∞ such that for k ∈ N0

sup
x∈K

|∆ku(x)| ≤ C(2k)!1−1/ρ(τ + ε)2k. (6)
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De�nition ([3]). Let ρ > 0 and τ ≥ 0. An entire
function F is said to be of exponential growth (ρ, τ )
if for every ε > 0 one can �nd Cε such that for any
R < ∞

sup
|z|≤R

|F (z)| ≤ Cε exp{(τ + ε)Rρ}.

The exponential growth of an entire function can be
expressed in terms of estimations of its Taylor coe�-
cients.
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It appears that a function u of Laplacian growth (ρ, τ )
on Ω is in fact real-analytic on Ω (see [1, Theorem
2.2 in Chapter II]). So the spherical and solid means
N(u; x,R) and M(u; x,R) are well de�ned for x ∈ Ω
and R small enough. However due to estimation (6)
both functions N(u; x,R) and M(u; x,R) can be ex-
tended to entire functions of exponential growth.
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Theorem 5 ([9]). Let ρ > 0 and τ ≥ 0.
If u is of Laplacian growth (ρ, τ ), then N(u; x,R) and
M(u; x,R) extend holomorphically to entire functions
of exponential growth (ρ, τρ/ρ) locally uniformly in Ω.
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Theorem 6 ([9]). Let u ∈ A(Ω).
If M(u; x,R) (resp. N(u; x,R)) de�ned for x ∈ Ω
and 0 ≤ R < dist(x, ∂Ω) extends to an entire function

M̃(u; x, z) (resp. Ñ(u; x, z)) of exponential growth
(ρ, τ ) locally uniformly in Ω,

then u is of Laplacian growth
(
ρ, (τρ)1/ρ

)
.
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6. Convergent solutions of the heat equation

Let us consider the initial value problem for the heat
equation {

∂tu−∆xu = 0,
u|t=0 = u0,

(7)

where u0 ∈ A(Ω), Ω ⊂ Rn.
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Then its formal power series solution is given by

û(x, t) =
∞∑
k=0

∆ku0(x)

k!
tk. (8)

We ask when the solution u is an analytic function of
time variable at t = 0. In the dimension n = 1 the
problem was solved by Kowalevskaya [8].
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She proved that the solution u is analytic in time if
and only if the initial data u0 can be analytically ex-
tended to an entire function of exponential order 2. In
the multidimensional case the solution of the problem
was given by Aronszajn at al. [1], but only in terms of
the Laplacian growth of the initial data.
Here we give its solution in terms of the mean value
functions of the initial data.
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Theorem 7 ([9, Theorem 5.1]). Let 0 < T ≤ ∞. If
formal power series solution (8) of the heat equation (7)
is convergent for |t| < T locally uniformly in Ω, then
M(u0; x,R) and N(u0; x,R) extend to an entire func-
tion of exponential growth (2, 1/(4T )) locally uniformly
in Ω.
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Conversely, if M(u0; x,R) or N(u0; x,R) can be
extended to an entire function of exponential growth
(2, 1/(4T )) locally uniformly in Ω, then the solution (8)
of (7) is convergent for |t| < T locally uniformly in Ω.
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Proof. Assume that û(t, x) is convergent for |t| < T
loc. unif. in Ω. Then ∀K b Ω, ε > 0 ∃C s.t.

sup
x∈K

|∆ku0(x)| ≤ C
( 1

T
+ ε

)k
· k!

≤ Cε

( 1

T
+ ε

)k(1
2
+ ε

)k
· (2k)!1/2

≤ Cε

(
(2T )−1/2 + ε

)2k
· (2k)!1/2.
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Hence u0 is of Laplacian growth (2, 1/
√
2T ) and by

Theorem 5, M(u0; x,R) and N(u0; x,R) extend to
entire functions of exponential growth (2, 1/(4T )) lo-
cally uniformly in Ω.
On the other hand let M(u0; x,R) or N(u0; x,R)

can be extended to an entire function of exponential
growth (2, 1/(4T )) loc. unif. in Ω. Then by Theorem
6, u0 is of Laplacian growth (2, 1/

√
2T ) loc. unif. in

Ω.
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Hence for |t| < T and small ε > 0

sup
x∈K

∞∑
k=0

|∆ku0(x)|
k!

|t|k ≤ ...

≤ Cε

∞∑
k=0

[( 1

T
+ ε

)
|t|
]k

< ∞.

So û(t, x) is convergent for |t| < T locally uniformly in
Ω. �
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The problem of Borel summability of formal solutions
of the heat equation was solved by Michalik ([12, 13]).

Theorem 8 ([13, Theorem 1]). Let d ∈ R, Dn a disc
in Cn and û be the formal power series solution (8) of
the heat equation (7) with u0 ∈ O(Dn). Then TFCAE

• û is 1-summable in the direction d;

• M(u0; z, R) ∈ O
(
Dn;O2(Ŝd/2 ∪ Ŝd/2+π)

)
;

• N(u0; z, R) ∈ O
(
Dn;O2(Ŝd/2 ∪ Ŝd/2+π)

)
.
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Furthermore, the 1-sum of û is given by

ud(z, t) = 1
(4πt)n/2

∫
(eıd/2R)n

exp
{
−eiθ|x|2

4t

}
u0(x + z)dx

if the integral is well de�ned.

Here Ŝd = D1 ∪ Sd, Sd is a sector bisected by the
direction d and Os(Ŝd) is the space of holomorphic

functions F on Ŝd of exponential order s, i.e. satisfying

|F (ζ)| ≤ Cec|ζ|
s

for ζ ∈ Ŝd.
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7. Second order heat type equations

Let P be a homogeneous, second order PDO with con-
stant coe�cients. Then the formal solution of{

∂tu− Pxu = 0,
u|t=0 = u0 ∈ A(Ω),

(9)

is given by

û(x, t) =

∞∑
k=0

P ku0(x)

k!
tk. (10)
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In [14] S. Michalik has given conditions for conver-
gence and Borel summability of û(x, t) in terms of gen-
eralized integral mean value function Mµ with respect
to a probability Borel measure µ supported by the ball
B(0, 1).
For u ∈ C0(Ω), x ∈ Ω and 0 ≤ R < dist(x, ∂Ω) set

Mµ(u; x,R) =

∫
u(x +Ry) dµ(y).
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Assuming that Mµ satis�es a Pizzetti type formula
with respect to the operator P , i.e. if u ∈ A(Ω), then

Mµ(u; x,R) =

∞∑
j=0

P ju(x)

m(j)
R2j

for some moment function m of order 2, (i.e. m(j) ≈
(2j)!) he proved the following.
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Theorem 9 ([13, Theorem 1]). Let d ∈ R and û be
the formal power series solution (10) of the heat type
equation (9) with u0 ∈ O(Dn). Then

• û is convergent for small t i�
Mµ(u0; z, R) ∈ O

(
Dn;O2(C)

)
;

• û is 1-summable in the direction d i�
Mµ(u0; z, R) ∈ O

(
Dn;O2(Ŝd/2 ∪ Ŝd/2+π)

)
.
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8. Higher order mean value functions

Let k ∈ N. Denote by ϵ = ϵk the transformation of Cn

into Cn given by

ϵ(z1, . . . , zn) = (e2πı/kz1, . . . , e
2πı/kzn).

Let u be a continuous function de�ned on a complex
neighborhood U of an open set Ω ⊂ Rn.
For x ∈ Ω and 0 < R < dist(x, ∂U) we de�ne

51



the spherical and solid mean value functions of order k

Nk(u; x,R) =
1

knσ(n)

k−1∑
j=0

∫
Sn−1(0,1)

u
(
x +Rϵj(y)

)
dS(y),

Mk(u; x,R) =
1

kσ(n)

k−1∑
j=0

∫
Bn(0,1)

u
(
x +Rϵj(y)

)
dy,

where σ(n) = πn/2/Γ(n/2 + 1) = |B(0, 1)|.
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Note that if k is odd, thenNk(u; x,R) = N2k(u; x,R)
and Mk(u; x,R) = M2k(u; x,R). In particular

N1(u;x,R) = N2(u;x,R) =
1

nσ(n)

∫
S(0,1)

u(x +Ry) dS(y)

and

M1(u; x,R) = M2(u;x,R) =
1

σ(n)

∫
B(0,1)

u
(
x +Ry

)
dy.

Assume that u ∈ A(Ω) is a real analytic function on
an open set Ω ⊂ Rn.
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Then u extends to a function ũ holomorphic on a com-
plex neighborhood U of Ω and for any x ∈ Ω it holds

ũ(y) =
∑
κ∈Nn

0

1

κ!

∂|κ|u
∂xκ

(x)(y−x)κ for ∥y−x∥ < ρ(x)

with some function ρ ∈ C0(Ω,R+).
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Theorem 10 ([10, Theorem 1], Higher order Pizzetti's
formulas).
Let k = 2l with l ∈ N, u ∈ A(Ω) and x ∈ Ω.
Then the functions

R 7→ Nk(u; x,R) and R 7→ Mk(u; x,R)

are real analytic at the origin and for R small enough
it holds
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Nk(u; x,R) =

∞∑
m=0

∆lmu(x)

4lm
(n
2

)
lm(lm)!

R2lm, (12a)

Mk(u; x,R) =

∞∑
m=0

∆lmu(x)

4lm
(n
2 + 1

)
lm(lm)!

R2lm. (12b)
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The proof is done by expending u into Taylor power
series, noting that the integral of yκ over B(0, 1) van-
ishes if at least one of the coordinates κi of κ is odd,
using the following property of the roots of unity
k−1∑
j=0

e2j|κ|πı/k =

{
k if |κ| = km for some m ∈ N0,

0 otherwise,

and the formula [4, formula 676, 11], and �nally rec-
ognizing in the obtained expression the powers of the
laplacian multiplied by numerical factors. 2
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Real analytic functions can be characterized as those smooth ones

for which the higher order Pizzetti's series converge.

Theorem 11 ([10, Theorem 2]). Let l ∈ N,
ρ ∈ C0(Ω;R+) and u ∈ C∞(Ω). If the series

Ñ(x,R) =

∞∑
m=0

∆lmu(x)

4lm
(n
2

)
lm(lm)!

R2lm

is convergent locally uniformly in {(x,R) : x ∈ Ω, |R| <
ρ(x)}, then u ∈ A(Ω) and N2l(u; x,R) = Ñ(x,R).
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Corollary 2 Under the assumptions of Theorem 11 if
the series

M̃(x,R) =

∞∑
m=0

∆lmu(x)

4lm
(n
2 + 1

)
lm(lm)!

R2lm

is convergent locally uniformly in
{(x,R) : x ∈ Ω, |R| < ρ(x)},
then u ∈ A(Ω) and M2l(u; x,R) = M̃(x,R)
for x ∈ Ω and 0 < R < min

(
ρ(x), dist(x, ∂Ω)

)
.
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9. Maximum principle for polyharmonic functions

It is well known that modulus of a function u harmonic
on a connected domain Ω ⊂ Rn cannot attain its max-
imum at an interior point of Ω unless u is constant.
On the other hand this maximum principle does not
extends to p-polyharmonic functions, i.e., solutions to
∆pu = 0 with p ≥ 2. However due real analyticity of
such functions by the formula (12b) we obtain the fol-
lowing maximum principle for polyharmonic functions.
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Theorem 12 ([10, Theorem 3]). Let u be a real val-
ued, p-polyharmonic function on a connected open set
Ω ⊂ Rn. Denote by ũ its holomorphic extension to a
connected complex neighborhood U of Ω.
If for some x0 ∈ Ω and r0 > 0 we have

u(x0) ≥ Re ũ(y) for y ∈ x0 +

p−1∑
j=0

ϵj
(
B(0, r0)

)
,

where ϵ(z) = e2πı/(2p)z, then u is constant on Ω.
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Proof. Since u is p-polyharmonic the series in (12b)
terminates at the �rst term. Hence

M2p(u; x,R) =
1

pσ(n)

p−1∑
j=0

∫
Bn(0,R)̃

u
(
x+ϵj(y)

)
dy = u(x).

So M2p(u; x0, R) = u(x0) for 0 < R < ρ(x0) and
the assumption implies that Re ũ(y) = u(x0) for y ∈
x0+

∑p−1
j=0 ϵ

j
(
B(0, r1)

)
with 0 < r1 < min(r0, ρ(x0)).

It follows that u is constant on Ω. 2
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10. Convergent solutions of higher order heat equations

For p ∈ N let us consider the initial value problem for
the p-th order heat type equation{

∂tu−∆
p
xu = 0,

u|t=0 = u0,
(13)
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where u0 ∈ A(Ω), Ω ⊂ Rn. Clearly, the unique formal
power series solution of (13) is given by

û(t, x) =
∞∑

m=0

∆mpu0(x)

m!
tm. (14)

We ask when the solution u is an analytic function of
the time variable at t = 0.
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Theorem 13 ([10, Theorem 6]). Let 0 < T ≤ ∞. The
formal power series solution (14) of the initial value
problem (13) is convergent for |t| < T locally uni-
formly in Ω, i� M2p(u0; x,R) and/or N2p(u0; x,R)
extend holomorphically to entire functions of exponen-
tial growth( 2p
2p−1,

2p−1
2p (2pT )1−2p

)
locally uniformly in Ω.

The problem of summability of formal solutions of the
p-th order heat equation was solved by Michalik.
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Theorem 14 ([14, Corollary 3]). Let û be the formal
power series solution (14) of the equation (13) with
u0 ∈ O(D). Then TFCAE

• û is 1
2p−1-summable in a direction d;

• M2p(u0; z, R) ∈ O
(
Dn;O

2p
2p−1(

∑2p−1
k=0 Ŝd+2kπ

2p
)
)
;

• N2p(u0; z, R) ∈ O
(
Dn;O

2p
2p−1(

∑2p−1
k=0 Ŝd+2kπ

2p
)
)
.
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11. A Dirichlet type problem for polyharmonic functions

Let Ω be a domain in Rn and p ∈ N. We introduce the
following Dirichlet type problem for p-polyharmonic
functions. Set ϵ = ϵ2p(z) = e2πı/(2p)z.

Given functions fk on ϵk
(
∂Ω

)
, k = 0, . . . , p − 1, �nd

a function u satisfying{
∆pu = 0 on

∪p−1
k=0 ϵ

k
(
Ω
)
,

u = fk on ϵk
(
∂Ω

)
, k = 0, . . . , p− 1.

67



In the case of the unit ball the problem was solved by
H. Grzebuªa in 2016.

Theorem 15 ([6, Theorem 1]). The problem
∆pu = 0 on

∪p−1
k=0 ϵ

k
(
B(0, 1)

)
,

u = fk on ϵk
(
S(0, 1)

)
, k = 0, . . . , p− 1

(15)
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has a unique solution given by

u(x) =
1

pσ(n)

p−1∑
k=0

∫
S(0,1)

1− |x|2p

|ϵ−kx− y|n
fk
(
ϵky

)
dy.

The solution is a holomorphic function on the Lie ball
LB(0, 1) = {z ∈ Cn : |z|2 +

√
|z|4 − |z2|2 < 1}.

The proof uses the Almanasi expansion of a polyhar-
monic function to reduce the problem (15) to the Dirich-
let problem for harmonic functions on the unit ball.
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