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Outline
The quasisolution method is designed to address questions of existence of solu-
tions of ODEs, PDEs or di�erence equations, and in determining their proper-
ties, especially global ones, when classical methods are not known to apply. We
have used it in a number of previously open questions such as Dubrovin’s con-
jecture for P1, blowup in Wave Maps and Yang-Mills equations. It originated
in the study of a spectral problem for NLS (w. Schlag and M. Huang).

By a quasisolution we understand an actual function which satisfies a given
equation within “suitable” error bounds. Once the quasisolution is determined,
showing the existence of an actual solution follows from standard contractive
mapping arguments in adapted Banach spaces; these show the existence of an
actual solution, roughly within the same error bounds from the quasisolution,
globally, over the region of existence.

Obtaining usable quasisolutions with a low degree of complexity is made pos-
sible by resurgent function theory, discovered by Écalle. Resurgence theory
applies to a wide spectrum of problems in analysis, such as ODEs, PDEs and dif-
ference equations. It provides very rich information of functions in nontrivial
regions, such as close to essential singularities. With various extensions s.a
transasymptotic analysis and KAM analysis it provides the tools for find accu-
rate global representations– quasisolutions.
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Types of representation. Illustration, the Dubrovin
conjecture

The Painlevé P1 equation,
f ′′ = 6f 2 + z

has a five-fold symmetry (simultaneous rotation by 2π/5 of z and of f by−π/5
leaves the equation invariant).

There exist 5 special solutions, tritronquées, which are asymptotically free of
poles in 4 of the 5 symmetry sectors. The Dubrovin conjecture, important in
NLS & Toda la�ices stated that the tritronquées are not only asymptotically
pole-free but completely pole-free in these sectors, down to z = 0. This is a
central connection question not solvable by Riemann-Hilbert.

Strategy: Find an approximation of f globally good in the four sectors.

Infinity is an irregular singularity, where expansions diverge. Beyond the sector
of analyticity, P1, and more generally nonlinear equations develop singularity
arrays; these a�ect the behavior in the analytic sector as well.
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Figure: For the tritronquées there is only one C, and it is zero in 2 out of the five
sectors–the sectors opposite to the pole sector. There is a reflection symmetry
by the middle antistokes line.
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We will also use a standard normalization of P1, similar to the Boutroux
form. A�er the change of variables

x =
eiπ/4

30
(24z)5/4 f (z) = i

√
z
6

(
1− 4

25x2 + y(x)

)
(1)

P1 becomes

y ′′ +
1
x

y ′ − y =
y2

2
+

392
625x4 . (2)

from which we can derive the asymptotic expansion

y(x) = − 392
625x4 −

6272
625x6 −

141196832
390625x8 + O

(
x−10)

valid for a one parameter family of solutions, the tronquées. To specify the
tritronquée we need a constant, the constant beyond all orders.
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Behavior at infinity (away from antistokes lines)

Asymptotic expansions and transseries at infinity, in sectors of analyt-
icity. General meromorphic nonlinear ODEs are known to possess transseries
expansions at infinity (called “multi-instanton expansions” in physics), which
for a first order ODE, a�er normalization, would take the form

∞∑
k=0

Ckxkβe−kx ỹk(x) (∗)

where C is an arbitrary constant (the constant beyond all orders),

ỹk(x) =
∞∑
j=0

cjk

xk

are factorially divergent series. For higher order systems more than one expo-
nential may be present and Ckxkβe−kx is replaced by

∏
j≤j0 [Cjxβj e−λjx ]kj . Here

x → ∞ in such a way that Re (λjx) > 0 (or else we need Cj = 0). The lines
where Re (λjx) = 0 are called antistokes lines; if Cj 6= 0 we call them active.

Each ỹk(x) is Écalle-Borel summable, and a�er Borel summation (*) becomes
convergent and represents the general decaying solution of the ODE.
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Figure: For the tritronquées there is only one C, and it is zero in 2 out of the
five sectors–the sectors opposite to the pole sector.
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For the tritronquées there is only one small exponential, and it is absent in the
two sectors farthest from the pole sector; β = −1/2.

Whenever a series is Écalle-Borel summable, it is summable to the least term
with exponential accuracy. That means, for P1,

bxc∑
k=4

ck

xk = o(e−|x|)

Berry hyperasymptotics, that we improved recently allows for much sharper
approximations, not needed here. In fact, the two terms

y01 :=∼
√

z
6

(1− 4
25x2 ); x = eiπ/4 (24z)5/4

30

su�ice to obtain relative errors of ∼ 1/200 for |z| > 1.7 in these two sectors.
To show this rigorously, we take y = y01 + δ, write the ODE for δ in integral
form; the integral equation is contractive for |z| > 1.7 in the two sectors, and
the error bound above is the one that follows from this argument (the actual
ones are be�er).
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Behavior close to active antistokes lines
When a Stokes line (a line where Im (xλj) = 0) is crossed the constant C in

∞∑
k=0

Ckxkβe−kx ỹk(x) (∗)

changes from C to C + S where S is the so-called Stokes multiplier. For the
tritronquée C = 0 before the first Stokes line. Thus its central antistokes line
is inactive.

Note that (*) can be thought of as a formal power series in two variables, 1/x
and ξ = Ce−xxβ ,

ỹ = ỹ(1/x, ξ)

Transasymptotic analysis (OC., R.D. Costin, Invent. Math 2001) deals with the
behavior of resurgent functions when ξ is not small anymore, or is even large.
The natural approach is to combine the terms:

ỹ =
∞∑

k=0

x−kFk(ξ) (∗∗)
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O Costin, R.D. Costin, R. Donninger, I Glogić, W Schlag, S Tanveer, X. Xia�asisolutions 9 / 28



ỹ =
∞∑

k=0

x−kFk(ξ), ξ = Cxβe−x (∗∗)

thought of as a function of two variables, (x−1, ξ), and keep Fk unexpanded. It
is shown in the paper above that (**) extends to a valid expansion (divergent in
x , convergent in ξ) of the actual solution y in a region containing the first array
of singularities, down except for O(1/x) nbds of the actual singularities. These
expansions apply in the transseries region as well, and they extend transseries.

The singularities of y come in arrays due to the periodicity of e−x in ξ, and are
located within O(1/x) of the singular points of F0(ξ).

Transasymptotic expansions, the resurgent analog of Taylor series, can be matched
to the Laurent/Puiseux expansions at singular points and to the Taylor series
at zero. For generic second order ODEs, the Fk are explicit and singularities
can be calculated in closed form. For P1, Fk are some rational functions with
F0 = ξ/(ξ − 12)2.
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The expansion at infinity, truncated for 1/200 rel.
errors when |z| > 1.7

Though poles are absent in the four sectors, the behavior of the solution in the
bordering sectors is a�ected by their presence.
We chose the following truncation of f . f0 =∼ i

√
z/6[1− 4/(25x2) + y0] with

y0(x) =

(
ξ +

ξ2

6
+
ξ3

48
+

ξ4

432
+

5ξ5

20736

)
− 1

x

(
ξ

8
+

11
72
ξ2 +

43
1152

ξ3
)

+
9ξ

128x2

(3)

Here ξ = x−1/2e−x , Re x > 0. If x is far from the pole sector (not the case e.g.
when |z| < 3 or so), the ξ terms can be ignored.

The outer solution is valid within 1/200 for |z| ≥ 1.7. At 1.7 it matches a Taylor
series about zero with radius of convergence > 18/10. For the proof: we write
f = f0 + δ in integral form and use standard contractive mapping arguments
in suitable Banach spaces.

With newer methods A. Adali S. Tanveer computed the solution rigorously
within 10−5 accuracy, and the first pole in the 5th sector within 4.10−6.
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O Costin, R.D. Costin, R. Donninger, I Glogić, W Schlag, S Tanveer, X. Xia�asisolutions 11 / 28



The expansion at infinity, truncated for 1/200 rel.
errors when |z| > 1.7

Though poles are absent in the four sectors, the behavior of the solution in the
bordering sectors is a�ected by their presence.
We chose the following truncation of f . f0 =∼ i

√
z/6[1− 4/(25x2) + y0] with

y0(x) =

(
ξ +

ξ2

6
+
ξ3

48
+

ξ4

432
+

5ξ5

20736

)
− 1

x

(
ξ

8
+

11
72
ξ2 +

43
1152

ξ3
)

+
9ξ

128x2

(3)

Here ξ = x−1/2e−x , Re x > 0. If x is far from the pole sector (not the case e.g.
when |z| < 3 or so), the ξ terms can be ignored.

The outer solution is valid within 1/200 for |z| ≥ 1.7. At 1.7 it matches a Taylor
series about zero with radius of convergence > 18/10. For the proof: we write
f = f0 + δ in integral form and use standard contractive mapping arguments
in suitable Banach spaces.

With newer methods A. Adali S. Tanveer computed the solution rigorously
within 10−5 accuracy, and the first pole in the 5th sector within 4.10−6.
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The pole sector and the Stokes constant (O C, R.D.
Costin, M. Huang, TAMS 2016)

In the pole sector, we found expansions in asymptotically conserved quantities
which we used for determining (in closed form) the Stokes multiplier of P1
without resorting to linearizations (i.e., without isomonodromic deformations,
or Riemann-Hilbert).
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The idea is that single-valuedness (the “naive” Painlevé property) translates
into a consistency condition between the outer transseries + transasymptotic
expansions of the tritronquée and the inner KAM one. The consistency equa-

tion is an equation for the Stokes multiplier with a unique solution, S = i
√

6
5π .
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Accurate formula for Blasius’ similarity solution

This is an important similarity solution to boundary layer equations past a
semi-infinite plate. It satisfies a two point boundary value equation,

f ′′′(x) + f (x)f ′′(x) = 0 for x ∈ (0,∞) (4)

with initial condition at zero and no-slip boundary condition (condition at in-
finity)

f (0) = 0 , f ′(0) = 0 , lim
x→+∞

f ′(x) = 1 (5)

Blasius derived it as an exact solution to Prandtl boundary layer equations.
Existence and uniqueness of the solution were first proved by Weyl. In order to
optimize various physical quantities, it is important to have accurate formulas
over R+. Again, matching transseries and local expansions at zero

Theorem (OC, S. Tanveer, SIAM 2014)
The solution is within 10−5 of the function

F0(x) =

{
x2

2 + x4P (x) for x ∈ [0, 5
2 ]

ax + b +
√

a
2t(x)q0(t(x)) for x > 5

2
(6)
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2 ]

ax + b +
√

a
2t(x)q0(t(x)) for x > 5

2
(7)

where a, b, c are some specific rational numbers, and

q0(t) = 2c
√

te−t I0 + c2e−2t (2J0 − I0 − I2
0

)
, (8)

t(x) =
a
2

(x+b/a)2, I0(t) = 1−
√
πteterfc(

√
t) , J0(t) = 1−

√
2πte2terfc(

√
2t) ,

(9)
where erfc is the complementary error function and P is a degree 12 polynomial
with rational coe�icients. Higher accuracy formulas can be similarly obtained.

The same approach was pursued by S. Tanveer, A. Parab, A. Adali, TE Kim
and others for a variety of boundary value problems and integro-di�erential
equations in Fluid dynamics.
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Spectral problems

An energy-supercritical Yang-Mills model. Let Aµ : R1,5 → so(5) be five
fields on (1 + 5)-d Minkowski space with values in the matrix Lie algebra of
SO(5); for fixed µ and (t, x) ∈ R1,5, Aµ(t, x) is real, skew-symmetric. One sets

Fµν := ∂µAν − ∂νAµ + [Aµ,Aν ]

and considers the action functional∫
R1,5

tr(FµνFµν). (10)

(Y-M can be viewed as a nonlinear generalization of electrodynamics.) The
Euler-Lagrange equations associated to the action (10) are

∂µFµν + [Aµ, Fµν ] = 0

The ansatz

Ajk
µ (t, x) = (δk

µx j − δj
µxk)

ψ(t, |x|)
|x|2

yields the scalar nonlinear wave equation

ψ� − ψrr −
2
r
ψr +

3ψ(ψ + 1)(ψ + 2)

r2 = 0

Does ψ blow up? (Shatah, Schlag, Struwe, Tataru, Donninger)
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ψ� − ψrr −
2
r
ψr +

3ψ(ψ + 1)(ψ + 2)

r2 = 0 (11)

(11) is energy-supercritical and large-data solutions can blow up in finite time
((11) has also been proposed as a model for singularity formation in Einstein’s
equation). The question of blow up has been open for a decade or so. Bizoń
discovered self-similar blowup solutions of the form

ψ0(t, r) = f0( r
1−t ), f0(ρ) = − 8ρ2

5 + 3ρ2 .

This is one blowup solution, the question is whether solutions do blow up in
this way in some open neighborhood of ψ0.

Donninger developed a complete and elegant nonlinear stability theory for this
and other types of nonlinear wave equations. However, the theory relies on a
spectral condition on a linear nonselfadjoint operator described below. In sim-
ilarity coordinates τ = − log(1− t), ρ = r

1−t , ϕ(τ, ρ) = ψ(1− e−τ , e−τρ),

ϕττ + ϕτ + 2ρϕτρ − (1− ρ2)(ϕρρ + 2
ρϕρ) +

3ϕ(ϕ+ 1)(ϕ+ 2)

ρ2 = 0 (12)

The domain of interest for (12) is the backward lightcone, τ ≥ 0, ρ ∈ [0, 1].
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The self-similar solution is independent of τ and simply given by f0(ρ). One
takes the mode ansatz

ϕ(τ, ρ) = f0(ρ) + eλτuλ(ρ), λ ∈ C

and linearizes in uλ.

This yields the ODE spectral problem for uλ

− (1− ρ2)(u′′λ + 2
ρu′λ) + 2λρu′λ + λ(λ+ 1)uλ +

V (ρ)

ρ2 uλ = 0 (13)

where the potential V is given by

V (ρ) = 6 + 18f0(ρ) + 9f0(ρ)2 = 6
25− 90ρ2 + 33ρ4

(5 + 3ρ2)2 .

The singularity at ρ = 1 is due to the light cone being a characteristic surface.

Nonlinear stability hinges on the (non)existence of nontrivial unstable eigenval-
ues corresponding to unstable modes. These are λs, Reλ ≥ 0 s.t. there is a
C∞[0, 1] solution to (13) (which is then real-analytic on [0, 1]).
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There is one innocuous unstable mode, λ = 1, reflecting time-translation sym-
metry. This is removed by supersymmetry techniques: there is a partner po-
tential W which has exactly the same spectrum except for the time-translation
eigenvalue. The problem finally is whether there are solutions analytic in a nbd
of [0, 1] of

− (1− ρ2)(w ′′λ + 2
ρw ′λ) + 2λρw ′λ + (λ2 + λ− 2)wλ +

W (ρ)

ρ2 wλ = 0. (14)

with Reλ ≥ 0, where W (ρ) = 20(15− 2ρ2 + 3ρ4)/(5 + 3ρ2)2.

Theorem (OC, R. Donninger, I Glogić, M. Huang, CMP 2016)

The self-similar solution ψ0 is mode stable.

We prove that any C∞ (implying analytic) solution at zero is singular at one:
A power series at zero,

∑∞
n=0 an(λ)ρ2n+3, a0 6= 0 has radius of convergence

one, which is shown finding a close approximation to an.
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The self-similar solution ψ0 is mode stable.

We prove that any C∞ (implying analytic) solution at zero is singular at one:
A power series at zero,

∑∞
n=0 an(λ)ρ2n+3, a0 6= 0 has radius of convergence

one, which is shown finding a close approximation to an.
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1 The equation is (nontrivially) Heun, and no connection formulas are known.
A�er various substitutions, one is led to a three term recurrence

q2(n)bn+2 + q1(n)bn+1 + q0(n)bn = 0, where (15)

q2(n) = −20n2 − 190n− 390,

q1(n) = 8n2 + (20λ+ 84)n + 5λ2 + 75λ+ 160,

q0(n) = 12n2 + (12λ+ 42)n + 3λ2 + 21λ+ 30.

2 Or, with rn = bn+1/bn we get the continued fraction

rn+1 = −An −
Bn

rn
,where An = q1(n)/q2(n) and Bn = q0(n)/q2(n) (16)

The quasisolution is obtained analyzing the behavior of the actual solution for
large n and small n and interpolating between the two. It is

r̃n(λ) =
λ2

4n2 + 31n + 43
+

λ

n + 4
+

n + 2
n + 4

. (17)
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r̃n(λ) =
λ2

4n2 + 31n + 43
+

λ

n + 4
+

n + 2
n + 4

. (18)

Lemma

r1 and (r̃n)−1 for n ≥ 1, are analytic in the closed RHP.

Proof.
The denominator of r1 and the polynomials r̃n(λ) for n ≥ 1 have all of their zeros are
in the (open) le� half-plane; here we use the Routh-Hurwitz criterion.

Now, let δn =
rn

r̃n
− 1. Substitution into the recurrence yields

δn+1 = εn + Cn
δn

1 + δn
, where

εn =
−Anr̃n − Bn

r̃nr̃n+1
− 1 and Cn =

Bn

r̃nr̃n+1
. (19)

to which we need to apply fixed point theorems which in turn need estimates.
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Lemma (Contractivity estimates)

The following estimates hold in H.

|δ1| ≤
1
4
, |εn| ≤

1
20
, |Cn| ≤

3
5
, n ≥ 1. (20)

Proof.
All three follow similarly. Take Cn: It is analytic inH, and polynomially bounded inH.
By Phragmén-Lindelöf it su�ices to prove the estimate on iR. For t real, we need to
show that |Cn+1(it)|2 = Q1(n, t2)/Q2(n, t2) ≤ 9/25, or equivalently 9/25 ·Q2−Q1 ≥
0. But 9/25 · Q2 − Q1 is even with positive coe�icients.
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Wave Maps

The method is not limited to this particular equation. In a later paper, we
proved blow up of (corotational) wave maps from R1+d Minkowski spacetime
into Sd , the d-dimensional sphere, for any d ≥ 3 (for d = 2 this was known
(Struwe).

Let (M, g) be a Lorentzian spacetime and (N , h) a Riemannian manifold. U :
(M, g) −→ (N , h) is called a wave map if it is a critical point of the geometric
action functional

Sg[U] :=
1
2

∫
M
|dgU|2 dµg.

Here,

|dgU(x)|2 ≡ |dgU(x)|2T?
x M⊗TU(x)N := trg (U? (h))

is the trace of the pullback metric on (M, g) via U. The integral is with respect
to the standard measure dµg on the domain manifold.
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In local coordinates (xµ) on (M, g) we have

Sg[U] =

∫
M

gµνhab(U)(∂µUa)(∂νUb) dµg (21)

where the Einstein summation convention is used. The Euler-Lagrange equa-
tions associated to this functional are

�gUa + gµνΓa
bc(U)(∂µUb)(∂νUc) = 0 (22)

and they constitute a system of semi-linear wave equations. Here, �g is the
Laplace-Beltrami operator on (M, g)

�g :=
1
|g|
∂µ(gµν |g|∂ν), |g| :=

√
|det(gµν)|

and Γa
bc are the Christo�el symbols associated to the metric h on the target

manifold. The system (22) is known as the wave maps equation (known in the
physics literature as non-linear σ-model) and is the analog of harmonic maps
between Riemannian manifolds in the case where the domain is a Lorentzian
manifold instead.
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As in Yang-Mills, from the Euler-Lagrange equations if the target is a hyper-
sphere and there is rotation symmetry, one obtains in similarity variables,

ϕττ + ϕτ + 2ρϕτρ − (1− ρ2)ϕρρ −
(

d − 1
ρ
− 2ρ

)
ϕρ +

sin(2ϕ)

ρ2 = 0, (23)

For all d ≥ 3, Bizoń-Biernat found self-similar blow-up solutions, now in the
form 2 arctan[(d−1)−1/2ρ]. The supersymmetrically reformulated mode-stability
problem is now

(1−ρ2)w ′′λ+

[
d − 1
ρ
− 2(λ+ 1)ρ

]
w ′λ−λ(λ+1)wλ−

2(d − 2)

ρ2

ρ2 − d
ρ2 + d − 2

wλ = 0.

(24)

where now the equation has two parameters.
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As before, we get a three step recurrence, with continued fraction representa-
tion rn+1 = −An − Bn/rn where now

An(λ, k) =
kλ2 + k(4n + 9)λ+ 4kn2 + 16nk − 4n2 + 14k − 16n− 16

2k(n + 2)(2n + k + 8)

and

Bn(λ, k) =
(λ+ 2n + 3)(λ+ 2n + 2)

2k(n + 2)(2n + k + 8)
.

and the quasisolution is

r̃n(λ, k) =
1
2

λ2

2n2 + (k + 8)n + k + 5
+

2λ
2n + k + 6

+
2n + 3

2n + k + 6
, (25)

Theorem (OC, R. Donninger, I Glogić, CMP, to appear)

For any dimension the Bizoń-Biernat solution is mode stable.

The proof is similar to the Y-M one.
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Conclusions

1 The tools of resurgence (transseries, Écalle-Borel summability, Berry hyper-
asymptotics, transasymptotic matching etc) can now be used to describe in
great detail and very good accuracy the behavior at infinity.

2 In many instances when we don’t have explicit solutions, we don’t need explicit
solutions either

3 and an “accurate enough” rigorous approximation can contain all the needed
information.

4 O�en there are only two important regions: the region at infinity, where trans-
series and transasymptotic analysis provide arbitrary accuracy expansions. Their
region of validity goes down close to zero or to the first singular point, where
they are shown to match the local expansions using standard analysis tools.

5 So far, we found them most useful in global, qualitative or semi-quantitative,
analysis of ODEs and di�erence equations, and we are upgrading them to be
used directly in PDEs.
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Thank you
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